Finite fibers of multi-graded dense rational maps on \mathbb{P}^3

Nicolas Botbol Laurent Busé Marc Chardin Fatmanur Yıldırım

Finite fibers of rational maps Ψ from \mathbb{P}^2 to \mathbb{P}^3 and also $\mathbb{P}^1 \times \mathbb{P}^1$ to \mathbb{P}^3 have been studied in [2] by Botbol, Busé and Chardin. For both cases, they have assumed that the base locus \mathcal{B} of Ψ is finite and locally complete intersection. Also for the both cases, \mathcal{B} contains only points and multiple of points. Under these assumptions, they write approximation complexes of cycles \mathcal{Z}_{\bullet} of multidegree ν computed according to [1]. They show that for these ν values, the Hilbert function of the fiber at a point $p \in \mathbb{P}^3$, becomes Hilbert polynomial of the fiber at p. From the first arrow of \mathcal{Z}_{\bullet} giving a family of matrices they chose one and denote it by $\mathcal{M}(\Psi)_{\nu}$. They study the fibers of dimension 0 and 1. They state a relation between the corank of $\mathcal{M}(\Psi)(p)_{\nu}$ and degree of the fiber at point p.

Our motivation is to compute the distance from a point $p \in \mathbb{R}^3$ to an algebraic rational surface $S \in \mathbb{R}^3$. For that purpose, firstly, from a parametrization of S, we construct a parametrization of normal lines to S, namely ψ from \mathbb{R}^3 into \mathbb{R}^3 . Secondly, we homogenize ψ in $\mathbb{P}^2 \times \mathbb{P}^1$ or possibly in $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$ and we obtain a multi-graded multi homogeneous rational map Ψ into \mathbb{P}^3 .

Our work is an extension of [2]. We present a new method to study the finite fibers of dense multi-graded rational maps Ψ from $\mathbb{P}^2 \times \mathbb{P}^1$ or $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$ to \mathbb{P}^3 . Different from the previous work [2], in this case the base locus \mathcal{B} of Ψ has degree one components, i.e it contains curves. This was the main difficulty to handle and we needed additional hypothesis to control the fiber over a point $p \in \mathbb{P}^3$. For the multi-degree ν computed again according to [1], we show that Hilbert function of the fiber at point $p \in \mathbb{P}^3$ becomes Hilbert polynomial at p which is equal to the corank of $\mathcal{M}(\Psi)(p)_{\nu}$. Moreover, at these multi-degree ν , the corank of $\mathcal{M}(\Psi)(p)_{\nu}$ is equal to degree of the fiber at p and it gives us the number of the orthogonal projections of p onto the surface \mathcal{S} under our construction.

References

 Nicolás Botbol. The implicit equation of a multigraded hypersurface. Journal of Algebra, 348(1):381 – 401, 2011. [2] Nicolàs Botbol, Laurent Busé, and Marc Chardin. Fitting ideals and multiple points of surface parameterizations. *Journal of Algebra*, 420(Supplement C):486 – 508, 2014.