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Gauss-Legendre quadrature requires a nearly minimal number of evaluation
points to achieve a given accuracy for numerical integration of functions that are
well-approximated by polynomials. However, other quadrature rules (such as
the Clenshaw-Curtis and double exponential formulas) have often been favored
in high-precision computations due to the cost of generating the quadrature
nodes, even in cases where those rules require more evaluation points.

We describe an efficient strategy for rigorous arbitrary-precision evaluation
of Legendre polynomials on the unit interval and its application in the generation
of Gauss-Legendre quadrature rules.

Our focus is on making the evaluation practical for a wide range of realistic
parameters, corresponding to the requirements of numerical integration to an
accuracy of about 100 to 100000 bits. Our evaluation algorithm combines the
summation by rectangular splitting of several types of expansions in terms of
hypergeometric series with a fixed-point implementation of Bonnet’s three-term
recurrence relation. We then compute rigorous enclosures of the Gauss-Legendre
nodes and weights using the interval Newton method. We provide rigorous error
bounds for all steps of the algorithm.

The practicality of the approach is validated by an implementation in the
Arb library. Our implementation achieves an order-of-magnitude speedup over
previous code for computing Gauss-Legendre nodes with simultaneous high de-
gree and precision, making Gauss-Legendre quadrature viable even at very high
precision.
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