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Context : Study and implementation of an algebraic method to
solve systems with fuzzy coefficients

Recent approach of a global method based on computer algebra, an algebraic technique
producing an exact result : the algorithm of Wu Wen Tsun.

M. Boroujeni, A. Basiri, S. Rahmany, and A. Valibouze. Finding solutions of fuzzy poly-
nomial equations systems by an algebraic method. Journal of Intelligent Fuzzy Systems,
2016.

Approach
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Compute the real solutions of the system :

AX + B = CX + D,

A,B,C,D matrices with fuzzy coefficients, X vector of real variables
Coefficients = triangular fuzzy numbers

n∑
i=1

ãli · xi + b̃l =
n∑

i=1

c̃li · xi + d̃l

for 0 ≤ l ≤ s.

À Passage to the parametric system : twice as many equations, one parameter r ,
then an intermediate system S : the collected crisp system

Á Computation of characteristic sets of S by Wu Wen Tsun’s triangular decom-
position algorithm

Â Correspondences between the quasi-varieties of these sets and the positive
solutions of the system of fuzzy polynomials : find the exact solutions

V (F ) =
⋃

C∈Z V (C/IC ) avec IC =
∏

p∈C initial(p)

Resolution of polynomial systems with fuzzy coefficients
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ä theory developed by Lotfi Zadeh in 1965

• Fuzzy sets : the membership function represents a degree of validity

• Advantages provided by fuzzy numbers : capturing uncertainty around a given
value

µ̃n(x) represents the degree of validity of the proposition "x is the value of ñ"

Fuzzy Numbers
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From a function f of the form

f : Rn −→ R
(x1, . . . , xn) 7−→ y = f (x1, . . . , xn)

we induce the following function f̃

f̃ : B(R)n −→ B(R)
(x̃1, . . . , x̃n) 7−→ ỹ = f̃ (x̃1, . . . , x̃n)

where B(R) is the class of fuzzy numbers of R.

ä The function f acts on real numbers, mean values.

ä The interest of the function f̃ is to keep the coherence of the action of the
function f on fuzzy numbers, more complex, taking into account their mean
value, their support and the general form of their membership function.

Principle of Fuzzification
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This principle lays the foundation for fuzzy arithmetic. Fix m̃ and ñ two fuzzy
numbers.

The sum :

µm̃⊕̃n(z) = max
z=x+y

min(µm̃(x), µ̃n(y))

(x , y , z) ∈ R3.
The law ⊕ is associative and commutative.

The opposite :

µ
−̃m

(z) = max
z=−x

min(µm̃(x)) = µm̃(−z)

This is the symmetric function of µm̃ with respect to the y-axis

äää For a fuzzy number m̃ whose support is not reduced to its mode,
m̃ ⊕ −̃m 6= 0, because m̃ has no symmetric element for the law ⊕.

Principle of Fuzzification
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• The tuple representation proposed by Dubois and Prade in 1977

Infinite support : Finite support :

mean value n triplet (n, α, β)
restrictions types : gaussians restrictions types : quadratic and linear

Tuple representation for finite supports

ä types of restrictions µ̃n−
and µ̃n+

induce families of fuzzy numbers.

Triangular Trapezoïdal Gaussian
ä The computations are carried out within the same family, two distinct simple

families are incompatible with each other.

Simple families
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Let L and R defined from [0,+∞[ to [0, 1] with L(0) = R(0) = 1, L(1) = R(1) = 0,
continue and decreasing on their domain.

Let m̃ = (m, α, β) and ñ = (n, γ, δ) ∈ F(L,R), the family L-R, so :

µm̃−
(x) = L

(m − x
α

)
, µm̃+

(x) = R
(

x −m
β

)
,

µ̃n−
(x) = L

(
n − x
γ

)
, µ̃n+

(x) = R
(x − n

δ

)
.

A family is defined by a unique couple of functions (L, R)

The sum is a fuzzy number L− R :

m̃ ⊕ ñ = (m, α, β)⊕ (n, γ, δ) = (m + n, α+ γ, β + δ)
The opposite is a fuzzy number R − L :

−̃m = −(m, α , β) = (−m, β , α)

ä The equations are independent of the analytical expressions of L and R : the
operations are performed on the triplets without neither L nor R being known
a priori.

Arithmetic on tuples
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Let R = K[x1, x2, . . . , xn], K field of characteristic zero, with the lexicographic order.
Let p, q ∈ R such that q /∈ K.

• class(p) = max { i ∈ {1, . . . , n} | xi appears in p }.
The leading coefficient of p in xclass(p) is denoted init(p).

• p is reduced with respect to q if and only if degxc (p) < degxc (q) where c =
class(q) 6= 0.

• An ordered set F = {f1, . . . , fr} is called a triangular set if r = 1 or if class(f1) <
· · · < class(fr ). It is called an ascending set if each fj is reduced with respect
to each fi , for i < j.

Tools

Let f , g ∈ R et c = class(f ). So there is an equation of the form

init(f )mg = qf + prem(g , f )
with q ∈ R the pseudo-quotient, prem(g , f ) ∈ R the pseudo-remainder, m ≥ 0 and
r = 0 or r is reduced with respect to f .
For a finite subset G ⊂ R, we set

prem(G ,F ) = {prem(g ,F ) | g ∈ G}.

Pseudo-division
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A ascending set B in R is called characteristic set of F ⊂ R if B ⊂< F > and
prem(F ,B) = {0}.

Characteristic set

The set
V (F ) = {(a1, . . . , an) ∈ Kn | f (a1, . . . , an) = 0, ∀f ∈ F}

is the variety defined by F .
For G ⊂ R, V (F/G) = V (F )\V (G) is a quasi-algebraic variety.

Quasi-algebraic variety

Let B be a characteristic set of F ⊂ R. So

V (F ) = V (B/IB)
⋃
∪b∈BV (F ∪ B ∪ {init(b)})

where IB =
∏

b∈B init(b).

ä By repeating Wu’s Principle Theorem, for each F ∪ B ∪ {init(b)}, b ∈ B, the
procedure will end in a finite number of steps.

ä The Wu algorithm allows to express the variety V (F ) as a finite union of quasi-
algebraic varieties of characteristic sets V (B/IB). Finding V (F ) becomes easy
because these caracteristic sets are easy to solve.

Wu Principle
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The parametric form of a fuzzy number ñ is an ordered pair [n(r), n(r)] of functions
from the real interval [0, 1] to R which satisfy the following conditions :
(i) n(r) is a bounded left continuous non-increasing function on [0, 1],
(ii) n(r) is a bounded left continuous non-decreasing function on [0, 1],
(iii) n(1) = n(1) = n.

Operations : ã + b̃ = [a(r) + b(r), a(r) + b(r)],
−ã = [−a(r), −a(r)],

ã = b̃ if and only if a(r) = b(r) and a(r) = b(r) for each real r ∈ [0, 1]

Parametric representation
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We consider a fuzzy number ñ = (n, α, β) in the family L-R such that

µ̃n−
(x) = L

(
n − x
γ

)
, µ̃n+

(x) = R
(x − n

δ

)
,

with α, β > 0 and where L and R are bijectives.
For all r ∈ [0, 1], ñr = [n(r), n(r)] with

n(r) = n − α L−1(r) et n(r) = n + β R−1(r)

Passage from tuple to parametric

L = R = F where F (x) = 1− x is bijective with F−1 = F .

We get ñ = [n, n] with

n(r) = α r + n − α and n(r) = −β r + n + β for r ∈ [0, 1].

The triangular case
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• We start from the system of s polynomials in n variables :

F :


f1(x1, x2, . . . , xn) = b̃1

...
fs (x1, x2, . . . , xn) = b̃s

where x1, x2, . . . , xn are real variables and all the coefficients and values to the
right of the equalities are triangular fuzzy numbers.

• We move to the parametric system P by replacing the fuzzy coefficients by
their parametric representation

P :


f1,1(x1, x2, . . . , xn, r) = b1(r)
f1,2(x1, x2, . . . , xn, r) = b1(r)

...
fs,1(x1, x2, . . . , xn, r) = bs (r)
fs,2(x1, x2, . . . , xn, r) = bs (r)

with 2s polynomials and n + 1 variables x1, . . . , xn, r where r ∈ [0, 1].
All coefficients in F are triangular fuzzy numbers, so P is linear in r .

Resolution Algorithm
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Therefore, the parametric system can be written as follows

P :


h1(x1, x2, . . . , xn)r + g1(x1, x2, . . . , xn) = 0
h2(x1, x2, . . . , xn)r + g2(x1, x2, . . . , xn) = 0

...
h2s (x1, x2, . . . , xn)r + g2s (x1, x2, . . . , xn) = 0

where hi , gi ∈ K[x1, x2, . . . , xn].
• By collecting the coefficients hi , gi , we construct the collected crisp system F ′,

satisfied for all r ∈ [0, 1].
The set of positive solutions of the starting system F is equal to the variety of
the system of its collected crisp form.

• We compute a set of caracteristic sets Z for F ′ with the Wu Wen Tsun algo-
rithm

• And we compute the variety of positive solutions V of F ′ i.e.

V (F ′) =
⋃
B∈Z

V (B/IB)

où IB =
∏

b∈B init(b)

Resolution Algorithm
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Demand and supply are nonlinear polynomial functions of the price fd and fo , such
that qd = fd(p) and qo = fo(p) with :{

qd + a = b.p2,

qo + c = d .p2

where
• a, b, c et d : coefficients represented by triangular fuzzy numbers and qo , qd

and p are real variables.
The variables are the quantity supplied qo , the quantity demanded qd and the price p.

The objective of the study is to achieve equality of supply and demand.
Let’s put qd = qo = x and p = y .

F :
{

x + (−1, 1, 1) = (−2, 1, 1)y 2,

x + (3, 1, 1) = (2, 1, 1)y 2

This system is solved by the algorithm described above.

Example from an application in economics

20/28



• Computation of the parametric system of system F{
x + [r − 2,−r ] = [r − 3,−r − 1]y2,
x + [r + 2,−r + 4] = [r + 1,−r + 3]y2

⇔
{

[x + r − 2, x − r ] = [y2r − 3y2,−y2r − y2],
[x + r + 2, x − r + 4] = [y2r + y2,−y2r + 3y2]

⇔
{

[(1− y2)r + x + 3y2 − 2, (y2 − 1)r + x + y2] = [0, 0],
[(1− y2)r + x − y2 + 2, (y2 − 1)r + x − 3y2 + 4] = [0, 0]

By identification, we obtain :

P :


(1− y2)r + x + 3y2 − 2 = 0,
(y2 − 1)r + x + y2 = 0,
(1− y2)r + x − y2 + 2 = 0,
(y2 − 1)r + x − 3y2 + 4 = 0

• construction of the collected crisp system collected F ′

F ′ :


(1− y2) = 0,
(y2 − 1) = 0,
x + 3y2 − 2 = 0,
x + y2 = 0,
x − y2 + 2 = 0,
x − 3y2 + 4 = 0

• Wu’s algorithm on the system F ′ returns the characteristic set Z = [{x + 1, y2 − 1}]
• We find the variety solution V = {(x = −1, y = ±1)}.

Thus, all the solutions of F were obtained exactly by the method presented.

Example from an application in economics
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ä Implementation of different representations in several classes
ä Redefining operators on these objects (polymorphism), and methods for dis-

playing graphs, order relations and transition to parametric representation

Implementation of the Fuzzy Library
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ä Resolution of polynomial systems with triangular fuzzy coefficients

Implementation of the Fuzzy Library
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ä G and D are decomposed to allow uniqueness of representation for ñ as in the
triangular case

ä In order to respect the uniqueness constraints of G and D for the quadratic
family, constraints are applied to them, and we then have

G1(x) = 2(x + 1)2, G2(x) = 1− 2x2, D1(x) = 1− 2x2, D2(x) = 2(−x + 1)2.

We obtain ñ = [n, n] with

n(r) =

{
b1(r) =

√
r
2 + n − α 0 ≤ r ≤ 1

2 ,

b2(r) = n − α
√

1−r
2

1
2 ≤ r ≤ 1,

0 otherwise.

et n(r) =

{
h1(r) = n + β

√
1−r
2

1
2 ≤ r ≤ 1,

h2(r) = −β
√

r
2 + n + β 0 ≤ r ≤ 1

2 ,

0 otherwise.

Exploration of the quadratric case
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Conclusion

Reinforce the resolution approach : new results which are independent from the
spread functions L-R.

ä The real transform T (S) : formula that gives collected crisp system with only
3 s equations of k variables with real coefficients

ä We extended the result to other families of fuzzy numbers

Extension

ä Finding real solutions of polynomial systems through the management of the
fuzzy system’s solutions signs : computing positive solutions of 2k systems.

ä We propose an optimized algorithm called SolveFuzzySystem which reduces
the number 2k of systems to solve

ä A parallel version of the algorithm is described

Implementation
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A
Thank you !
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