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Introduction

Foreword: Goal of this talk

In this talk, | will show tools and, if time permits, sketch proofs about
Noncommutative Evolution Equations.

The main item of data is that of Noncommutative Formal Power Series
with variable coefficients which allows explore in a compact and effective
(in the sense of machine computability) way the Hausdorff group of Lie
exponentials (i.e. the shuffle characters) and special functions emerging
from iterated integrals.

In particular, we have an analogue of Wei-Norman's theorem for these
groups allowing to understand some multiplicative renormalisations (as
those of Drinfeld). Parts of this work are strongly connected with Dyson
series and take place within the project:

Evolution Equations in Combinatorics and Physics.

This talk also prepares data structures and spaces for Hoang Ngoc
Minh's talk about associators.
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Introduction

An historic example : Lappo-Danilevskij's setting

J. A. Lappo-Danilevskij (J. A. Lappo-Danilevsky), Mémoires
sur la théorie des systémes des équations différentielles
linéaires. Vol. I, Travaux Inst. Physico-Math. Stekloff, 1934,
Volume 6, 1-256

§ 2. HYPERLOGARITHMES 159

§ 2. Hyperlogarithmes. En abordant la résolution algorithmique du
probléme de Poincaré, nous introduisons le systéme des tonctions

L., a,, .-, @), G Gar - sdy=1, 20 oo 0ym;v=1,2,3...)

définies par les relations de récurrence:

dz r—a,
Lb(af| lx) =f‘”—"f. = lOg — u; ’
(10) '
Ly(a; ... a_|2)
Ly @, . . . 0, [0) = Jr% da,

: v

oil b est un point fixe & distance finie, distinct des points a,, a,, . . ., a,,.

Ces fonctions seront nommées hyperlogarithmes de la premiére espece de
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Introduction

Lappo-Danilevskij setting/2

Let (aj)1<i<n be a family of complex numbers (all different) and
70 ¢ {ai}1<i<n, then

Definition [Lappo-Danilevskij, 1928]
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Introduction

Remarks

@ The result depends only on the homotopy class of the path and then
the result is a holomorphic function on B (B =C\ {a1, -+ ,an})
@ From the fact that these functions are holomorphic, we can also study

them in an open (simply connected) subset like the slit plane

@ o
| @ 80.__.-,...@34

as

Figure: The slit plane (as cleft by half-rays).
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Introduction

Remarks/2

© The set of functions aZ (A\) = L(ai, . .., ai,|20 % z) (or 1 if the list is
void) has a lot of nice combinatorial properties
o Noncommutative ED with left multiplier
o Linear independence
e Shuffle property
o A Wei-Norman-like factorization in elementary exponentials
o Possiblity of left or right multiplicative renormalization at a
neighbourhood of the singularities
e Extension to rational functions

In order to use the rich allowance of notations invented by algebraists,
computer scientists, combinatorialists and physicists about Non
Commutative Formal Power Series!, we will code the lists by words which
will allow us to perform linear algebra and topology on the indexing.

1This was the initial intent of the series of conferences FPSAC.
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Introduction

Wei-Norman theorem

[mathoverflow Lquesons | 120+ | vsrs | owags | uranavera

Local coordinates on (infinite dimensional) Lie groups, factorization of Riemann zeta functions

I ) asked 2 years, 6 months ago
Given a (finite dimensional) Lie group G (real k = R or complex k = C) and its Lie algebra g, viewed 631 times

one can prove (a basis B = (b,)lg,g,. of g being given) that there exists a neighbourhood W of active 11 months ago
3 1¢ (in G) and n local coordinate analytic functions

W = k, (ti)i<i<n FEATURED ON META
such that, for all g € W' [@ Donations to MathOverflow, inc
- HOT META POSTS
3 (*) g= H i@ _ gt gt2(a)br | ota(9)bn
15i<n 14 How does one cite a MO post with an
- anonymous author?
to see this, just remark that 3 Iflcan't get an answer on
math.stackexchange.com or
(t1,t2, - tn) — exp(tibr)exp(tabs) - - - exp(tnbn) dsp.stackexchange.com,...
10  On flagging: what is “research level” *or*

is a local diffeomorphism from k" to G in a neighbourhood of 0 and take the inverse. does it make sense to flag a..

This is the local Wei-Norman's theorem.
64 People Chatting
My questions are the following
Homotopy Theory
Let us loosely call infinite dimensional a Lie group whose Lie algebra is not finite dimensional Aaron Mazel-Gee
(this includes the example below and infinite dimensional Banach-Lie groups for instance).

01) Can vou provide examples of infinite dimensional Lie arouns where the exponential map
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Introduction

Theorem (Wei-Norman theorem)

Let G be a k-Lie group (of finite dimension) ( k =R or k = C) and let g
be its k-Lie algebra. Let B = {b;}1<j<n be a (linear) basis of it. Then,
there is a neighbourhood W of 1¢ (within G) and n analytic functions
(local coordinates)

W — k, (ti)i<i<n
such that, for all g € W

H
g = H eli(@)bi — ti(g)bigt2(g)b2  tn(g)bn

1<i<n
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Introduction

Example

Example

We take G = G/ (2,R) (GI+(2,R), connected component of 1 within
GI(27R))1
M= <a11 312>
a1 a2

We will practically compute the Wei-Norman coefficients through an
Iwasawa decomposition

M = unitary x diagonal x triangular

and compute MTDU = I, through the following elementary operations
@ ( Orthogonalisation)
@ ( Normalisation)
© ( Unitarisation)

(1)
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Introduction

(GlG) (0 1
a a 1 1
M = nA2) ), 6) = (cY, cMyelal? (6 o)
a1 a2 ’ Lo
0o 1 1 1 0 1 0 0\ (Gl%) (0o 1
gretan(Z (0 3) JeeIc (s §) JeeIcD(E 9 LA G o)
unitary diagonal (two exps) triangular

We then get a Wei-Norman decomposition w.r.t. the following basis of

o2 (4 0) (o o) (6 7)o o)
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Introduction

Use of this analogue for the group of characters

So, at the end of the day, if g is any shuffle character, we will get a
factorization of the same type

.
g = H e(8lsnPr
leLynX

Let us now return to our iterated integrals.
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Introduction

Coding by words

Consider again the mapping

az (N) = L(ai, - .-, ai]20 % z) = ag, (X, -+ xi,)

Lappo-Danilevskij recursion is from left to right, we will use here right to
left indexing to match with [1, 2, 3, 4]. Data structures are there
O Letters [1, 2]

@ Vector fields [3]
© Matrices [4]
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Introduction

Words

We recall basic definitions and properties of the free monoid [5]:

@ An alphabet is a set X (of variables or indeterminates, letters etc.)

e Words of length n (set X") are mappings w : [1---n] — X. The
letter at place j is w[j], the empty word 1x« is the sole mapping
) — X (i.e. of length 0). As such, we get, by composition, an action
e of &, on the right (noted w.o) and
e of the transformation monoid XX on the left
@ Words concatenate by shifting and union of domains, this law is noted
conc

e (X*, conc,1x+) is the free monoid of base X.

e Given a total order on X, (X*) is totally ordered by the graded
lexicographic ordering <giex (length first and then lexicographic from
left to right). This ordering is compatible with the monoid structure.
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Introduction

Lyndon words and factorizations

o Let c =[2---n,1] be the large cycle

@ a Lyndon word is a word which is strictly minimal in its conjugacy
class (as a family) i.e. (Vk € [L,n — 1])(/ <jex [.0¥)

e Each word w factorizes uniquely as w = ik - - - I, with [; € Lyn(X)
and h = b= Ih. (==>jex) We write

x= 1] r (2)

leLyn(X)

o If (P1)iecyn(x) is any multihomogeneous basis of Lieg(X) (R a
Q-algebra) then

N\
S wows I e
weX* leLyn(X)

where P,, is computed after eq. 2 and S, is such that (S,|P,) = 0,..
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Noncommutative generating series

We now have a function w — oZ (w) which maps words to holomorphic

functions on 2. This is a noncommutative series of variables in X and
coefficients in 7(£2). It is convenient here to use the “sum notation”.

S = Z ajo(w)w

weX*
It is not difficult to see that S is the unique solution of
{ d(S) = M.Swith M=>"

S(20) = Lu@xy

and that is it a shuffle character that is

(Slumv) = (S|u)(S|v) and (S|1x+) =1

I].Z a,

and, hence
S = | | e(SISnPr
leLynX
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- zo
The series SP,.C

The series S can be computed by Picard's process
So=Txe: Spet = lx- 4+ / M(s).Sn(s) ds
20

and its limit is S22 := lim, 00 Sp = > cx+ @Z, (W) w . One has,

Proposition

i) Series Sg_ is the unique solution of

(DE)

Ilza

{ d(S) = MSwithM=>"
5(20) = lu@)x)

i) The (complete) set of solutions of (DE) is SF_.C{(X)).

These (Noncommutative) Differential Equations with Multipliers
(as eq. 3) admit a powerful calculus and set of properties .
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Main facts about Non Commutative Diff. Eq.

Let

(TSM) dS = M1 S + SM» (4)

with S € H(@Q)(X), M; € H(Q)4 (X)
(i) Solutions of (TSM) form a C-vector space.

(ii) Solutions of (TSM) have their constant term (as coefficient of 1x«)
which are constant functions (on Q); there exists solutions with
constant coefficient 1 (hence invertible).

(iii) If two solutions coincide at one point zy € Q (or asymptotically), they
coincide everywhere.
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Theorem (cont'd)

(iv) Let be the following one-sided equations
(LMy) dS = MS (RMy) dS = SM». (5)

and let Sy (resp. Sy) be a solution of (LMy) (resp. (LM>)),
then 515, is a solution of (TSM). Conversely, every solution of
(TSM) can be constructed so.

(v) Let Sgi_;w, (resp. Spi. ras,) the unique solution of (LMy) (resp.
(RM2)) s.t. S(z0) = 19y(q). (xy then, the space of all solutions of
(TSM) is

SIZD(;C,LMl (C<<X>> 'SIZD(;C7RM2

(vi) If M;, i =1,2 are primitive for A and if S, a solution of (TSM), is
group-like at one point (or asymptotically), it is group-like everywhere
(over Q).
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Introduction

Linear (and algebraic) independence with combinatorics on
words: Concrete form

Theorem (with Deneufchatel and Solomon [6])

Let S € H(Q)({(X)) be a solution of the (Left Multiplier) equation
(C C H(2) a differential subfield)

d(S) = MS ; (S|ix:) =1 with M= u(z)x € C{(X))
The following are equivalent : xex
i) the family ((S|w))wex~ of coefficients is independant (linearly) over C.

i) the family of coefficients ((S|x))xexu{iy} s independant (linearly)
over C.

i) the family (ux)xex is such that, for f € C et ay, € C

Z axuy = (Vx € X)(ax =0).
xeX
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Introduction

Linear independence by combinatorics on words: Abstract
theorem

Theorem ([6])
Let (A, d) be a k-commutative associative differential algebra with unit
(ch(k) =0, ker(d) = k) and C be a differential subfield of A (i.e.

d(C) € C). We suppose that S € A({X)) is a solution of the differential
equation

d(S)=M.S; (S]1) =1 (6)

where the multiplier M is a homogeneous series (a polynomial in the case
of finite X ) of degree 1, i.e.

M= uxeC(X) . (7)

xeX

Then, the following conditions are equivalent :
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Abstract theorem /2

Theorem (cont'd)

Q The family ((S|w))wex~ of coefficients of S is free over C.
Q The family of coefficients ({S|y))yexufiy.} is free over C.
© The family (ux)xex is such that, for f € C and ay € k

d(f) = o, = (Vx € X)(ax =0) . (8)

xeX

© The family (uy)xex is free over k and

d(C) (1 spam (ux)xex) = {0} - (9)

v
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Sketch of the proof (or goto slide 20)

(i)==(ii) Obvious.
(ii)==>(ii)

~—

suppose free (over C) the family ((S]y))yexufiy-}-

consider a relation d(f) = >~y axlix

form a formal pattern of this relation P = —flx- + > _y X
differentiate (S|P) and obtain (S|P) =\ € k

form Q = P — A1x- = —(f + A)1x= + >, cx axx and from
(5|Q) =0, get all a, =0.

(iii)<=(iv)

Obvious, (iv) being a geometric reformulation of (iii).

(ii)=(i)

Let K be the kernel of P — (S|P) (a form C(X) — A) i.e.

K ={P e C(X)|(S|P)=0}. (10)

If IC = {0}, we are done. Otherwise, let us adopt the following strategy.
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Introduction

First, we order X by some well-ordering < and X* by the graded
lexicographic ordering < defined by

u<v<=|ul<|v|or(u=pxs;, v=pys and x < y). (11)

It is easy to check that < is also a well-ordering relation. For each nonzero
polynomial P, we denote by lead(P) its leading monomial; i.e. the
greatest element of its support supp(P) (for <).

Now, as R = K — {0} is not empty, let wy be the minimal element of
lead(R) and choose a P € R such that lead(P) = wy. We write

P = fuwg + Z<P|u>u; fecC—{0}. (12)

u<wp

The polynomial @ = 1P is also in R with the same leading monomial, but
the leading coefficient is now 1; and so @ is given by

Q=wo+ Y (Qluju (13)

u<wp
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Introduction

Differentiating (S|Q) = 0, one gets

0 = (d(5)[Q) + (5d(Q)) = (M5|Q) + (5]d(Q))

= (SIMTQ) + (5|d(Q)) = (S|MTQ + d(Q)) (14)
with
MQ+d(Q) =D u(x'Q)+ > d((Qu))uecC(X). (15)
xeX u<wp

It is impossible that MTQ 4+ d(@) € R because it would be of leading
monomial strictly less than wg, hence Mt Q + d(Q) = 0. This is equivalent
to the recursion

d((Qlu)) = = u(Qlxu) ; forx € X, v e X", (16)

xeX
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Introduction

From this last relation, we deduce that (Q|w) € k for every w of length
deg(Q) and, from ((S]1) =1, (§|Q) = 0), one must have deg(Q) > 0.
Then, we write wy = yv and compute the coefficient at v

A((@QI) = = 3 el Qlxv) = 3" au (17)

xeX xeX

with coefficients o, = —(Q|xv) € k as |xv| = deg(Q) for all x € X.
Condition (8) implies that all coefficients (Q|xu) are zero ; in particular, as
(Qlyu) = (Q|wp) = 1, we get a contradiction. This proves that K = {0}.
U

Example (See [9] for C = C)

T
with C = C(z) (germs) and Q = C\ (] — o0, 0] U [1, +00]).

):12)5;5(20):1;2069.
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Characters and their factorisation

Solutions as m-characters with values in H(£2)

We have seen that (some) solutions of systems like that of
Hyperlogarithms possess the shuffle property i.e. defining the shuffle
product by the recursion

umlys = 1lysmu= uand
aumbv = a(umbv)+ b(aumv)
one has
(Spiclumv) = (SE |u)(Spiclv)  (Spillx=) =1 (18)

(product in H(2)).

Now it is not difficult to check that the characters of type (18) form a
group (these are characters on a Hopf algebra). It is interesting to have at
our disposal a system of local coordinates in order to perform estimates in
neighbourhood of the singularities.
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Characters and their factorisation

Schiitzenberger's (MRS) factorisation

This MRS? factorisation is, in fact, a resolution of the identity. It reads as
follows

Theorem (Schitzenberger, 1958, Reutenauer, 1988)

.
Let Dx := Z w ® w. Then Dx = Z Sy ® P, = H eSI®PI
weX* weX* IeLynX

where the product laws is the shuffle on the left and concatenation on the
right, (P1)iecyn(x) is an homogeneous basis of Lie(X) and (S/)jcyn(x):
the “Lyndon part” of the dual basis of (P, )yecx+ which, given that is
formed by

Pyt .. P where w = [ . [ with [t > ... > [, (lexorder)

2after Mélancon, Reutenauer, Schiitzenberger
V.C. Bui, Matthieu Deneufchitel, G.H.E. DucIEquations d'évolution et calcul différentiel noi JNCF '18 28 / 38




Characters and their factorisation

Applying MRS to a shuffle character

Now, remarking that this factorization lives within the subalgebra
Iso(X)={T € R{X*@ X*WH|(u® v € supp(T) = |u| = |v|)}
if Z is any shuffle character, one has
Z=(Zxld)() wew)= H elZ150P
weX* leLynX

We would like to get such a factorisation at our disposal for other types of
(deformed) shuffle products, this will be done in the second part of the
talk. Let us first, with this factorization (MRS) at hand, construct
explicitely Drinfeld’s solution Gg.
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Characters and their factorisation

Extensions of MRS to other shuffles

Name Formula (recursion) © Type
Shuffle [21] auww by = a(uw bv) + blau w v) p=0 1
Stuffle [19] Tt w 0 = Ti(uw 20) + 252w v) o(zi, ;) = Tig; I

+ Tiyj(u 2 v)
Min-stuffle (7] itk = 250 = (0 = T;v) + (T = v) o(xi, ;) = —Tiy; il
— Tiyj(usv)
Muffle [14] Tt T = Ti(ww 20) + 252 e v) o(xi, ;) = Tixj I
+ Iixj(u h U)
g¢-shuffle [3] Tt g0 = 2(U w0 g x;0) + 25 (T w o) o(xi, ;) = qTiy; 111
+ qxigj(uw gv)
g-shuffle, Tt w g0 = 2(U @ o x;0) + 25T w ) Pz, x5) = ¢ Tiy5 II
+ (I”IH-](U @ gv)
LDIAG(L, gs) [10]
(non-crossed, aww by = a(uw bv) + blau w v) p(a,b) = qlfubl(a.b) 11
non-shifted) + M b(uw v)
g¢-Infiltration [12] aut bv =a(u 1 bv) + b(au 1 v) p(a,b) = qdapa 111
+ gdapa(ut v)
AC-stuffle auw,bv = a(uw, bv) + blaww, v) (a,b) = p(b,a) v
+ap(a,b)(umvv) #(p(a,b),c) = p(a, p(b, c))
Somigroup- [Tt 50 = ey 5,0) + Ta(Buan ) | 9l o) = Tiis T
stuffle + 2415wy v)
-shuffle auw, bv = a(uw, bv) + blaww, v) (a,b) law of AAU \Y%
+ p(a, b)(uw, v)
Of conrse the a-shuffle is ecmal ta the (classical) shufle when a0 = 0 As far the a-
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Drinfeld’s normalisation

About Drinfeld’s solutions Gy, G;

We give below the computational construction of a solution with an
asymptotic condition.

In his paper (2. above), V. Drinfel'd states that there is a unique solution
(called Gp) of

d(S) = (2 +1%).S
lim.—o S(z)e*°8(2) = 1q)uxy

zeQ
and a unique solution (called Gj) of

{ d($) = (7 + Z)

im. ., eea(1

=~ 95(2) = L@y xy

Let us give here, as an example, a construction of Gy (G; can be derived
or checked by symmetry see also Minh's talk).
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Drinfeld’s normalisation

Explicit construction of Drinfeld's Gy

Given a word w, we note |w|y, the number of occurrences of x; within w

, B fo Ozo(u)fL if w=xu
ap(w) = I g (u) if w=xouand |uly, =0
u)

Jo of(u if w=xouand |uly >0.

(19)

) \&m \%&

The third line of this recursion implies

5 log(z)"
03(§) = &2

one can check that (a) all the integrals (although improper for the fourth
line) are well defined (b) the series S =) af(w)w

WEX*
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Drinfeld’s normalisation

satisfies the one sided evolution equation (LM)

X0 X1

d(S) = ( ).S

z 1—~z

hence T = (>, cx- a§(w) w)e *0/8(2) satisfies the two sided evolution
equation (TSM)

X0 X1

d(T):(z_Flfz

X0

)

). T+ T.(

Now, using Radford's theorem, one proves that S is group-like, factorizes
through (MRS) and that lim,_,o T(z) = 1.
This asymptotic condition on T implies that S = Gp.

V.C. Bui, Matthieu Deneufchitel, G.H.E. DucIEquations d'évolution et calcul différentiel noi JNCF '18 33 /38
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A remark

One can modify construction (19) using t € Q instead of 1 as follows

[§ai(u)E if w=xu

= _ 0 1-s
at(w) JPas(u)® if w=xuand |u|y, =0
foz af(u)% if  w=xouand |u[, >0.

One still has that G(t) := >, cx- af(w) w is group-like (similar proof)
and lim;,1 G(t) = Gp as

N\ N\
G(t) = H S(G(OISHP ( H e<G(t)|5/>P/>eXO(Iog(z)—/og(t))
IeLyn(X) leLyn(X)\{x0}

V.C. Bui, Matthieu Deneufchitel, G.H.E. DucIEquations d'évolution et calcul différentiel noi JNCF '18 34 /38




Drinfeld’s normalisation

Conclusion

@ For Series with variable coefficients, we have a theory of
Noncommutative Evolution Equation sufficiently powerful to cover
iterated integrals and multiplicative renormalisation.

e MRS factorisation provides an analogue of the (local) theorem of
Wei-Norman and allows to remove singularities with simple
counterterms.

e MRS factorisation can be performed in many other cases (like stuffle
for harmonic functions)

@ Use of combinatorics on words gives a necessary and sufficient
condition on the “inputs” to have linear independance of the solutions
over higher function fields.

@ Picard (Chen) solutions admit enlarged indexing w.r.t. compact
convergence on 2 (polylogarithmic case) but Drinfeld's Gy has a
domain which includes only some rational series (cf Minh's talk).

V.C. Bui, Matthieu Deneufchitel, G.H.E. DucIEquations d'évolution et calcul différentiel noi JNCF '18 35/ 38




Drinfeld’s normalisation

[1] P. Cartier, Jacobiennes généralisées, monodromie unipotente et
intégrales itérées, Séminaire Bourbaki, Volume 30 (1987-1988) , Talk
no. 687 , p. 31-52

[2] V. Drinfel'd, On quasitriangular quasi-hopf algebra and a group closely
connected with Gal(Q/Q), Leningrad Math. J., 4, 829-860, 1991.

[3] H.J. Susmann, A product expansion for Chen Series, in Theory and
Applications of Nonlinear Control Systems, C.I. Byrns and Lindquist
(eds). 323-335, 1986

[4] P. Deligne, Equations Différentielles a Points Singuliers Réguliers,
Lecture Notes in Math, 163, Springer-Verlag (1970).

[5] M. Lothaire, Combinatorics on Words, 2nd Edition, Cambridge
Mathematical Library (1997).

V.C. Bui, Matthieu Deneufchitel, G.H.E. DucIEquations d'évolution et calcul différentiel noi JNCF '18 36 / 38




[6]

[7]

[8]

[9]

Drinfeld’s normalisation

M. Deneufchatel, GHED, V. Hoang Ngoc Minh and A. |. Solomon,
Independence of Hyperlogarithms over Function Fields via Algebraic
Combinatorics, 4th International Conference on Algebraic
Informatics, Linz (2011). Proceedings, Lecture Notes in Computer
Science, 6742, Springer.

Szymon Charzynski and Marek Kus, Wei-Norman equations for a
unitary evolution, Classical Analysis and ODEs, J. Phys. A: Math.
Theor. 46 265208

G. Dattoli, P. Di Lazzaro, and A. Torre, SU(1,1), SU(2), and SU(3)
coherence-preserving Hamiltonians and time-ordering techniques.
Phys. Rev. A, 35:15821589, 1987.

Hoang Ngoc Minh, M. Petitot & J. Van der Hoeven.— Polylogarithms
and Shuffle Algebra, FPSAC'98, Toronto, Canada, Juin 1998.

V.C. Bui, Matthieu Deneufchitel, G.H.E. DucIEquations d'évolution et calcul différentiel noi JNCF '18 37 /38




Drinfeld’s normalisation

Thank you for your attention.
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