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Definition

A bipartite graph G = (X, Y, E) consists of two disjoint sets of vertices
X ={x1,...,xp} and Y = {y1,...,¥m}, and a set of edges

Ec{(xy)|xeX,yeY}.
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A bipartite graph G = (X, Y, E) consists of two disjoint sets of vertices
X ={x1,...,xp} and Y = {y1,...,¥m}, and a set of edges

Ec{(xy)|xeX,yeY}.

bipartite <= no odd cycles <= 2-colorable. J
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Definition

Let K be a field and R = K[x1,...,Xn, ¥1,---,¥m]. The edge ideal | =
I(G), associated to G, is defined by

= (x| (6.) € E).
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Definition
Let R(I) = @, /'t C R[t] be the Rees algebra of the edge ideal /. Let
fi,...,fq be the square free monomials of degree two generating /. Let
S =R[Ti,..., T4], and define the following map

S=K[xt,- s X, Y1+ Ym; T1,...,Tq]£>R(I)CR[t],

V(xi) =x, (i) =y, »(Ti)=fit.

Then the presentation of R(/) is given by S/K where I = Ker(v)).
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Problem
In terms of the combinatorics of the bipartite graph G, we want to:

@ Describe the universal Grobner basis of IC.
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Definition
Let R(I) = @, /'t C R[t] be the Rees algebra of the edge ideal /. Let
fi,...,fq be the square free monomials of degree two generating /. Let
S =R[Ti,..., T4], and define the following map
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Then the presentation of R(/) is given by S/K where I = Ker(v)).
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Problem
In terms of the combinatorics of the bipartite graph G, we want to:

@ Describe the universal Grobner basis of K.
o Compute the Castelnuovo-Mumford regularity of R(/).
o Study the regularity of the powers of the ideal /.
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Matrix associated to the presentation of R(/)

Given the presentation of the Rees algebra ¢ : S — R(/)
Y(xi)=xi, Yyi) =y, »(T;)="ft.
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Given the presentation of the Rees algebra ¢ : S — R(/)
Y(xi)=xi, Yyi) =y, »(T;)="ft.

Let A= (a;j) € Z""™9 be the incidence matrix of G, i.e. each column

corresponds to an edge f;. Then we construct the following matrix

fit fqt X1 ... Xp )% Ym
al,1 . al,q e . (S €n41 . €him
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an+m,1 e dn+m,q
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Matrix associated to the presentation of R(/)

Given the presentation of the Rees algebra ¢ : S — R(/)
Y(xi)=xi, Yyi) =y, »(T;)="ft.

Let A= (a;j) € Z""™9 be the incidence matrix of G, i.e. each column

corresponds to an edge f;. Then we construct the following matrix

fit fqt X1 ... Xp )% Ym
al,1 . al,q e . (S €n41 . €him
M =
ant+m,1 .o ant+m,q
1 . 1

IC is a toric ideal (Sturmfels

K= (Txy”‘+ ~Txy* |ac KerZ(M))




Example

X1 Y1

e 5 Y2

I = (lez,X2y1,X2y2)
0-K—=>S—>R({)—0

Ty = x1yot, To = Xoy1t, T3 = Xoyot

[o "



Example

y
“ ' I = (Xl}/z, X2Y1, X2Y2)

X2 5 v 0-K—=>S—>R({)—0

Ty = x1yot, To = Xoy1t, T3 = Xoyot

X1yat  xoyit  Xoypt X1 X2 Y1 Y2

xi1 [ 1 0 0 1 0 0 0
x | 0 1 1 0 1 0 0
M= v | o 1 0 0 0 1 0
vl 1 0 1 0 0 0 1
t 1 1 1 0 0 0 O
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Example

y
“ ' I = (Xl}/z, X2Y1, X2Y2)

X2 5 v 0-K—=>S—>R({)—0

Ty = x1yot, To = Xoy1t, T3 = Xoyot

X1yat  xoyit  Xoypt X1 X2 Y1 Y2

xi1 [ 1 0 0 1 0 0 0
x | 0 1 1 0 1 0 0
M= v | o 1 0 0 0 1 0
vl 1 0 1 0 0 0 1
t 1 1 1 0 0 0 O

a+ OtJr Oé+ a+ (X+ OtJr (X+
— 1 2 3 4 5 6 7
K= (T1 T2 T3° X % ° s

T TS TS T T | € Kera(M)
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Universal Grobner basis of IC

U= U G (K)

< runs over all possible term orders

(G<(K) denotes reduced Grébner basis with respect to <)




Universal Grobner basis of IC

U= U G-(K)

< runs over all possible term orders

(G<(K) denotes reduced Grobner basis with respect to <)
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Circuit
a € Kerz(M) is called a circuit if it has minimal support supp(«) with respect to

inclusion and its coordinates are relatively prime.

A,

In general we have that the set of circuits is contained in U.
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Universal Grébner basis of
U= U G<(K)

< runs over all possible term orders

(G<(K) denotes reduced Grobner basis with respect to <)

Circuit

a € Kerz(M) is called a circuit if it has minimal support supp(«) with respect to

| \

inclusion and its coordinates are relatively prime.

v

In general we have that the set of circuits is contained in U.

If G is a bipartite graph then U = Txyo‘+ — Txy® |« is a circuit of M }.

From Gitler, Valencia, and Villarreal 2005, then M is totally unimodular. Hence,
by Sturmfels 1996 we get the equality. OJ




Theorem
Let G be bipartite graph, then U is given by
U={Ty+ — T, | wis an even cycle}

U{vwoTw+ — vaTyu- | w=(vo,...,Vvs) is an even path}
U {uou, TW1+ TW; — VOVbTW; TW2+ | wi = (wo, ..., u,) and
wy = (v, ..., vp) are disjoint odd paths}.
.
X1 T1 yi x1 X1 X2
T
v
7—4 T2 Tl T2
o T, 1 V2
¥2 Ts X2
ToTy— T T3 x1To —xT; xiy1 To — xoy0 Ty



Proof. (sketch).

@ We construct the cone graph C(G) of G (add a new vertex z and connect it

to all vertices of G).
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o Let K[C(G)] =K][e| e € E(C(G))] C R[z]. Then we have a canonical map
m:S — K[C(G)] C R[z],
m(xi) = xiz, w(y;))=yz, «(T;)="f.

We have that R(/) = K[C(G)] (Vasconcelos 1998), and so K = Ker(r).




Proof. (sketch).

@ We construct the cone graph C(G) of G (add a new vertex z and connect it
to all vertices of G).

= =

o Let K[C(G)] =K][e| e € E(C(G))] C R[z]. Then we have a canonical map
m:S — K[C(G)] C R[z],
m(xi) = xiz, w(y;))=yz, «(T;)="f.
We have that R(/) = K[C(G)] (Vasconcelos 1998), and so K = Ker(r).

@ From Villarreal 1995 we can determine the circuits of the incidence matrix of
C(G). Finally, we translate them into the circuits of M.




S is bigraded with bigrad(x;) = bigrad(y;) = (1,0) and bigrad(T;) = (0, 1).
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S is bigraded with bigrad(x;) = bigrad(y;) = (1,0) and bigrad(T;) = (0, 1).
R(/) as a bigraded S-module has a minimal bigraded free resolution

0—F— - —F— Fp— R(I) —0,
where F; = &;S5(—aj, —bj;). As in Rémer 2001, we can define
reg.y (R(1)) = max{a; — i},
regr (R(1) = max{by — 1}

reg(R(/)) = max{a; + b; — i}.
’5.,
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S is bigraded with bigrad(x;) = bigrad(y;) = (1,0) and bigrad(T;) = (0, 1).
R(/) as a bigraded S-module has a minimal bigraded free resolution

0—F— - —F— Fp— R(I) —0,

where F; = &;S5(—aj, —bj;). As in Rémer 2001, we can define

reg.y (R(1)) = max{a; — i},
reg7(R(/)) = max{b; — i},

reg(R(/)) = max{a; + b; — i}.
’5.,

Theorem (Rémer , Chardin
reg(/°) < 2s + reg,, (R(/)) for all s > 1.

Let < be any term order in S, then we have reg,, (R(/)) < reg,, (S/in<(K)).




Regularity of the powers of /

A celebrated result of Cutkosky, Herzog, and Trung 1999 and Kodiyalam 2000
says that (for a general ideal in a polynomial ring) reg(/°) = as + b for s > 0.
But the exact form of this linear function and when reg(/°) starts to be linear is
still wide open even for monomial ideals.
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Regularity of the powers of /

A celebrated result of Cutkosky, Herzog, and Trung 1999 and Kodiyalam 2000
says that (for a general ideal in a polynomial ring) reg(/°) = as + b for s > 0.
But the exact form of this linear function and when reg(/°) starts to be linear is
still wide open even for monomial ideals.

Corollary

G bipartite graph with bipartition V(G) = XU Y. Then, for all s > 1 we have
reg(l°) < 2s + min{|X|,|Y]|} — 1.

Proof.

Using our characterization of U, a “suitable” term order and the Taylor resolution,
then we can bound reg, (S/in<(K)). O

v




Let G be a bipartite graph and | = I(G) be its edge ideal. The total
regularity of R(I) is given by
reg(R(!)) = match(G).
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Let G be a bipartite graph and | = I(G) be its edge ideal. The total
regularity of R(I) is given by

reg(R (1)) = match(G).

Proof (sketch).

@ Since M s totally unimodular, then by Gitler, Valencia, and Villarreal
2005 we have that R(l) is a normal domain.

e From Hochster 1972, then R(I) is Cohen-Macaulay and so it has a
canonical module wrgy).

© The minimal free resolutions of R(I) and wgy are dual.

@ wg(y) can be computed using a formula of Danilov and Stanley
(Gitler, Valencia, and Villarreal 2005).

A\




Corollary

@ For all s > match(G) + |E(G)| + 1 we have
reg(1(G)™*") = reg(I(G)°) + 2.
@ For all s > 1 we have
reg(1(G)®) < 2s + match(G) — 1.
Proof.
Using the upper bound for the total regularity we get
regr(R(!)) < match(G),
reg,, (R(I)) < match(G) — 1.

Then the results follow from Cutkosky, Herzog, and Trung 1999 and Rémer 2001,
respectively. O

v




A sharper upper bound and a Conjecture

For bipartite graphs, we have the following inequalities
reg(/*) < 2s + co-chord(G) — 1 < 2s + match(G) — 1 < 25 + min{|X|, | Y|} — 1.

The upper bound reg(/*) < 2s + co-chord(G) — 1 was obtained in Jayanthan,
Narayanan, and Selvaraja 2016 using a combinatorial argument called “even

connection”.
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A sharper upper bound and a Conjecture

For bipartite graphs, we have the following inequalities
reg(/*) < 2s + co-chord(G) — 1 < 2s + match(G) — 1 < 25 + min{|X|, | Y|} — 1.

The upper bound reg(/*) < 2s + co-chord(G) — 1 was obtained in Jayanthan,
Narayanan, and Selvaraja 2016 using a combinatorial argument called “even

connection”.

Conjecture (Alilooee, Banerjee, Beyarslan and Ha)

Let G be an arbitrary graph then
reg(1(G)®) < 2s + reg(/(G)) — 2

for all s > 1.

(We always have 2s + co-chord(G) — 1 < 2s + reg(/(G)) — 2.)
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