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1 Introduction

Given a system of differential equations, we would like to be able to solve the following tasks:

(a) determine all analytic solutions;

(b) obtain an overview of all consequences of the system; in particular, given another differ-
ential equation, decide whether it is a consequence of the system or not;

(c) among the consequences find the ones which involve only certain specified unknowns.

Throughout these notes we shall consider partial differential equations (PDEs) for unknown
functions u1(z1, . . . , zn), . . . , um(z1, . . . , zn). Since we are going to employ formal methods,
we restrict our attention to formal power series solutions in (a). Convergence of these power
series on certain regions of Rn or Cn is to be investigated after the formal treatment. In fact,
the formal treatment may reveal conditions on how the region in Rn or Cn should be chosen.
Singular points will be excluded from consideration.

One of the first existence theorems for a large class of PDEs is the Cauchy-Kovalevskaya
Theorem [Kov75], [RR04], [Eva10].

Theorem 1.1 (Cauchy-Kovalevskaya, 1875). The Cauchy problem

∂u1

∂z1
=

n∑
j=2

m∑
k=1

a1,j,k(z2, . . . , zn, u1, . . . , um)
∂uk
∂zj

+ b1(z2, . . . , zn, u1, . . . , um),

...

∂um
∂z1

=

n∑
j=2

m∑
k=1

am,j,k(z2, . . . , zn, u1, . . . , um)
∂uk
∂zj

+ bm(z2, . . . , zn, u1, . . . , um),

u1(0, z2, . . . , zn) = 0 for all z2, . . . , zn,

...

um(0, z2, . . . , zn) = 0 for all z2, . . . , zn,

where ai,j,k and bi are real analytic functions around the origin of Rm+n−1, has a unique real
analytic solution (u1, . . . , um) in a neighborhood of (z1, . . . , zn) = (0, . . . , 0).

Note that any system of differential equations can be rewritten as a system of first order
differential equations by introducing new unknown functions, if necessary. The differential
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equations in Theorem 1.1 are quasilinear in the sense that each equation is linear in the
highest derivatives of the unknown functions. Analytic coordinate changes may be used to
transform boundary data on an analytic hypersurface which is non-characteristic for the first
order PDE system to the hypersurface z1 = 0. Theorem 1.1 is also valid for complex analytic
functions. However, the assumption of analyticity is necessary (cf. [Lew57]).

In work of C. Méray [Mér80] and C. Riquier [Riq10] in the second half of the 19th cen-
tury a generalization of the Cauchy-Kovalevskaya Theorem was obtained. Riquier’s Existence
Theorem asserts the existence of analytic solutions to systems of PDEs of a certain class (cf.
also [Tho28, Tho34], [Rit34, Chap. IX], [Rit50, Chap. VIII]). The equations are assumed to be
solved for certain distinct partial derivatives and their right hand sides are analytic functions
of z1, . . . , zn and of partial derivatives of u1, . . . , um which are less than the ones on the
respective left hand side with respect to a certain kind of total ordering. Moreover, the system
is supposed to incorporate all integrability conditions in some sense.

It is a non-trivial task to include here all relevant references. Among the most important
historical ones we select: C. Méray [Mér80], C. Riquier [Riq10], M. Janet (1888–1983) [Jan29],
J. M. Thomas (1898–1979) [Tho37, Tho62], J. F. Ritt [Rit34], [Rit50], E. R. Kolchin [Kol73]
and A. Seidenberg [Sei56]. Related references are [Olv93], [Pom78], [Pom94], [Sch08a] and
many more.

Closely related to the method of Thomas decomposition discussed in these notes is the
Rosenfeld-Gröbner algorithm and its implementation in the Maple package diffalg resp.
DifferentialAlgebra (cf., e.g., [BLOP95], [BLOP09], [Hub97], [Hub00], [Bou]), but also
the method of regular chains [LMMX05] and the rifsimp algorithm [RWB96]. Moreover, the
notion of a characteristic set, introduced by Ritt and Wu, again belongs to the same circle
of ideas, cf., e.g., [Wu00], [Wu89] [Wan98], [Wan01], [Wan04], [Dio92]. Janet bases to be
introduced in Section 2 are related to Gröbner bases [Buc06, Buc87] as well as involutive
bases [GB98a, GB98b, ZB96].

It is essential to note that the presented methods are also fundamental for further effective
module-theoretic constructions for rings of linear functional operators and their implementa-
tions, on which applications, e.g., to systems theory are built (cf., e.g., [CQR05], [CQR07],
[CQ08], [CQ09], [Rob15]). The algorithms discussed in these notes have been implemented in
Maple packages (Involutve, Janet, JanetOre, LDA, AlgebraicThomas, DifferentialThomas).

This exposition is based, in particular, on [Rob07], [Rob14], [LHR], [GLR].
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2 Systems of linear differential equations

In this section we assume that the given system of differential equations is linear (and homo-
geneous). In other words, for some l, m, n ∈ N, some ring D of differential operators, some
matrix of operators R ∈ Dl×m and some left D-module F we can write the system as

Ru = 0 , where u =


u1

u2
...
um

 , (2.1)

for the unknown functions ui = ui(z1, . . . , zn) ∈ F , i = 1, . . . , m. The consequences of
(2.1) are the left D-linear combinations of the rows of R, i.e., the elements of D1×lR. (The
functions in F need to be infinitely often differentiable at least.)

Example 2.1. An example of a system of linear PDEs with constant coefficients is
∂2u

∂x2
= 0 ,

∂2u

∂y2
+
∂u

∂x
+
∂u

∂y
= 0 ,

(2.2)

where u = u(x, y) depends on x = z1 and y = z2. We may choose D = K[∂x, ∂y], where
K ∈ {Q,R,C, . . .} and where ∂x and ∂y are the partial differential operators with respect to
x and y, respectively. The multiplication in D is composition of operators.

Example 2.2 ([Rob14], Ex. 3.2.38). A system of linear PDEs with non-constant coefficients
for u = u(x, y) is given by

∂3u

∂x ∂y2
− ∂3u

∂y3
− (2y + 1)

∂2u

∂y2
− 4

∂u

∂y
= 0 ,

∂3u

∂x2 ∂y
− ∂3u

∂y3
− 2 (2y + 1)

∂2u

∂x ∂y
+ (4y2 + 4y − 5)

∂u

∂y
= 0 .

We may choose K to be Q(x, y) or the field or meromorphic functions on some open and
connected subset Ω of C2. Moreover, we let D = K〈∂x, ∂y〉 be the ring of differential operators∑

i,j≥0

ai,j ∂
i
x ∂

j
y , ai,j ∈ K ,

which are (skew) polynomials in ∂x and ∂y, where composition is non-commutative in general.

Example 2.3 ([Rob14], Ex. 2.1.46). Linearizing the system on nonlinear PDEs
∂u

∂x
− u2 = 0 ,

∂2u

∂y2
− u3 = 0 ,

(2.3)

for one unknown function u of x and y, we obtain the system of linear PDEs
∂U

∂x
− 2uU = 0 ,

∂2U

∂y2
− 3u2 U = 0 ,

(2.4)
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for one unknown function U of x and y, where u is a solution of (2.3). In this case a preparatory
treatment of the nonlinear system (2.3) is necessary to deal with the linearized system (2.4).
The methods to be discussed in Section 3 allow to split system (2.3) into two systems

ux − u2 = 0 { ∂x, ∂y }

2uy
2 − u4 = 0 { ∗ , ∂y }

u 6= 0 u = 0 { ∂x, ∂y }

(where subscripts indicate differentiation and where the meaning of the sets on the right will
become clear later). The set of analytic solutions of the original system (2.3) is the disjoint
union of the set of analytic solutions of the above two systems. We define the polynomial ring
R = Q(

√
2)[u, ux, uy, ux,x, ux,y, uy,y, . . .] and the ideal I of R which consists of all R-linear

combinations of
ux − u2 , ∂x

(
ux − u2

)
, ∂y

(
ux − u2

)
, ∂2

x

(
ux − u2

)
, . . .

uy −
√

2
2 u2 , ∂x

(
uy −

√
2

2 u2
)
, ∂y

(
uy −

√
2

2 u2
)
, ∂2

x

(
uy −

√
2

2 u2
)
, . . .

Then R/I is an integral domain, and we may choose K as the field of fractions of R/I.
Moreover, we define D = K〈∂x, ∂y〉. (Instead of uy −

√
2

2 u2 one may also choose uy +
√

2
2 u2.)

Remark 2.4. An essential remark for what follows is that the given linear PDEs translate
into linear equations for the Taylor coefficients ci,j of power series solutions

u(x, y) =
∑
i,j≥0

ci,j
(x− x0)i

i!

(y − y0)j

j!

by substituting this ansatz into the PDEs and comparing coefficients (and similarly for a
different number of independent variables and unknown functions). However, in order for the
resulting system of linear equations in ci,j to characterize the power series solutions of the PDE
system correctly (around a sufficiently generic point (x0, y0)), an overview of all consequences
of the PDE system needs to be obtained first. Interesting new consequences are usually
found by differentiating two known consequences so that in a suitable linear combination of
these derivatives the highest derivatives of the unknown function cancel. Considering again
Example 2.3, differentiation of the two PDEs in (2.4) yields

∂2

∂y2

(
∂U

∂x
− 2uU

)
=

∂3U

∂x∂y2
− 2

(
∂2u

∂y2
U + 2

∂u

∂y

∂U

∂y
+ u

∂2U

∂y2

)
=

∂3U

∂x∂y2
− 2u3 U − 2

√
2u2 ∂U

∂y
− 6u3 U

and
∂

∂x

(
∂2U

∂y2
− 3u2 U

)
=

∂3U

∂x∂y2
− 3

(
2u

∂u

∂x
U + u2 ∂U

∂x

)
=

∂3U

∂x∂y2
− 6u3 U − 6u3 U .

Hence, we obtain

∂2

∂y2

(
∂U

∂x
− 2uU

)
− ∂

∂x

(
∂2U

∂y2
− 3u2 U

)
= 4u3 U − 2

√
2u2 ∂U

∂y
,

which yields the consequence
∂U

∂y
−
√

2uU = 0 .
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2.1 Monomial ideals

Let ∂1, . . . , ∂n be the partial differential operators with respect to z1, . . . , zn and define
D = K[∂1, . . . , ∂n] for some field K. For the sake of simplicity, we assume in this section
that the operators ∂i act trivially on K, i.e., K consists of constants, and that we deal with
a system of differential equations for one unknown function only.

The simplest operators in D are given by monomials

∂J := ∂j11 . . . ∂jnn , where J = (j1, . . . , jn) ∈ (Z≥0)n .

For µ ⊆ { ∂1, . . . , ∂n } we consider the monoid

Mon(µ) := { ∂J | J = (j1, . . . , jn) ∈ (Z≥0)n, ji = 0 for all i such that ∂i 6∈ µ }

with the usual divisibility relation |, and we let Mon(D) := Mon({ ∂1, . . . , ∂n }). An ideal of
D which is generated by monomials is called a monomial ideal.

Example 2.5. The system of linear PDEs

∂2u

∂x ∂y
= 0 ,

∂4u

∂x3 ∂z
= 0 ,

∂4u

∂x ∂y2 ∂z
= 0 ,

∂5u

∂x2 ∂y ∂z2
= 0 (2.5)

for the unknown function u = u(x, y, z) defines the monomial ideal I of K[∂x, ∂y, ∂z] which is
generated by ∂x∂y, ∂3

x∂z, ∂x∂2
y∂z, ∂2

x∂y∂
2
z . The ideal I encodes all consequences of (2.5).

Remark 2.6. Let the ideal I of D be generated by monomials m1, . . . , mr. Then every
monomial in I is a multiple of some mi. The set of all monomials in I is a multiple-closed
subset of Mon(D) in the sense of the following definition.

Definition 2.7. A set S ⊆ Mon(D) is said to be Mon(µ)-multiple-closed, µ ⊆ { ∂1, . . . , ∂n },
if

ms ∈ S for all m ∈ Mon(µ) , s ∈ S .

Every set G ⊆ Mon(D) satisfying

Mon(µ)G = {mg | m ∈ Mon(µ), g ∈ G } = S

is called a generating set for the Mon(µ)-multiple-closed set S.

Example 2.8. Let D = K[∂1, ∂2] and G := { ∂1∂
2
2 , ∂

3
1∂2, ∂

4
1 }. We consider the Mon(D)-

multiple-closed set S generated by G. If we visualize the monomial ∂i1∂
j
2 as the point (i, j) in

the positive quadrant of a two-dimensional coordinate system, then the set S of monomials
can be viewed as the discrete set of points in the upper-right region in Figure 1.

The following combinatorial fact is also referred to as Dickson’s Lemma.

Lemma 2.9. Every Mon(D)-multiple-closed subset of Mon(D) has a finite generating set.
Equivalently, every ascending chain of Mon(D)-multiple-closed subsets of Mon(D) terminates.

In other words, every sequence of monomials in which no monomial has a divisor among
the previous ones is finite.

Exercise. Prove Lemma 2.9 by induction on n.

Remark 2.10. Every multiple-closed set has a unique minimal generating set. It is obtained
from any generating set G by removing all elements which have a proper divisor in G.
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Figure 1: Mon(D)-multiple-closed set S

Example 2.11. The multiple-closed set generated by ∂x∂y, ∂3
x∂z, ∂x∂2

y∂z, ∂2
x∂y∂

2
z in Exam-

ple 2.5 has minimal generating set { ∂x∂y, ∂3
x∂z }.

We are going to partition multiple-closed sets (and, more importantly, their complements
in Mon(D)) into cones of monomials, one instrumental fact being that the latter are again
Mon(µ)-multiple-closed sets for some µ ⊆ { ∂1, . . . , ∂n }. For a set S let P(S) be its power set.

Definition 2.12. (a) A pair (C, µ) ∈ P(Mon(D)) × P({ ∂1, . . . , ∂n }) is called a cone if
there exists v ∈ C such that

Mon(µ) v = {mv | m ∈ Mon(µ) } = C .

The elements of µ are called the multiplicative variables, those of µ := { ∂1, . . . , ∂n } \ µ
the non-multiplicative variables for (C, µ) (or simply for C, or for v). We often also refer
to the cone C by the pair (v, µ), where v is the generator of C.

(b) Let S ⊆ Mon(D). A cone decomposition of S is a finite set { (m1, µ1), . . . , (mr, µr) } of
cones such that Ci := Mon(µi)mi, i = 1, . . . , r, satisfy

r⋃
i=1

Ci = S and Ci ∩ Cj = ∅ for all i 6= j .

Example 2.13. A cone decomposition of the multiple-closed set S defined in Example 2.8 is

{ (∂4
1 , {∂1, ∂2}), (∂3

1∂2, {∂2}), (∂2
1∂

2
2 , {∂2}), (∂1∂

2
2 , {∂2}) } ,

which is visualized in Figure 2.

Remark 2.14. A cone decomposition of S ⊆ Mon(D) defines a restriction of the usual
divisibility relation of monomials as follows. A monomial m ∈ Mon(D) is divisible by a
generator m′ of a cone (m′, µ) if and only if there exists m′′ ∈ Mon(µ) such that m = m′′m′.
The disjointness of the cone decomposition entails that among cone generators the divisor is
unique.

Given a finite set {m1, . . . ,mr } of monomials, there are many possible ways of how to
arrange sets of multiplicative variables µ1, . . . , µr such that { (m1, µ1), . . . , (mr, µr) } is a set
of disjoint cones. These possibilities are addressed by the notion of involutive division which
was introduced by V. P. Gerdt, Y. A. Blinkov, A. Y. Zharkov [GB98a, GB98b, ZB96], cf. also
[Ape98]. Important for this exposition is only the Janet division:
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Figure 2: A cone decomposition of S

Definition 2.15. For a finite subsetM of Mon(D) Janet division defines the set µ = µ(m,M)
of multiplicative variables for each m ∈M as follows. Let m = ∂i11 . . . ∂inn .

∂k ∈ µ :⇐⇒ ik = max { jk | ∂j11 . . . ∂jnn ∈M with j1 = i1, j2 = i2, . . . , jk−1 = ik−1 }.

This definition assumes the ordering ∂1, ∂2, . . . , ∂n of the variables; a different ordering may
be used as well. There are also other common involutive divisions. For instance, J. Thomas
[Tho37] proposed another way of defining the multiplicative variables of cones; still another
one is named after J.-F. Pommaret (cf., e.g., [Jan29, no. 58], [Pom94, p. 90], [Sei10]).

Example 2.16. ForM = { ∂2
1∂2, ∂

2
1∂3, ∂

2
2∂3, ∂2∂

2
3 } Janet division associates the sets µ(m,M)

of multiplicative variables to the elements m ∈ M as indicated in the following table, where
we replace non-multiplicative variables in the set { ∂1, . . . , ∂n } with the symbol ’∗’.

∂2
1 ∂2, {∂1 , ∂2 , ∂3}
∂2

1 ∂3, {∂1 , ∗ , ∂3}
∂2

2 ∂3, { ∗ , ∂2 , ∂3}
∂2 ∂

2
3 , { ∗ , ∗ , ∂3}

Definition 2.17. A finite subset M of Mon(D) is said to be Janet complete if⋃
m∈M

Mon(µ(m,M))m =
⋃
m∈M

Mon(D)m,

i.e., if every monomial which is divisible by some monomial in M is obtained by multiplying
a certain m ∈M by multiplicative variables for m only. (Recall that the left hand side of the
above equation is a disjoint union.)

Example 2.18. The setM in Example 2.16 is not Janet complete because, e.g., the monomial
∂1 ∂

2
2 ∂3 is not obtained as a multiple of any m ∈ M when multiplication is restricted to

multiplicative variables for m. By adding this monomial and the monomial ∂1 ∂2 ∂
2
3 to M , we

obtain the following Janet complete superset of M in Mon(D).

∂2
1 ∂2, {∂1 , ∂2 , ∂3}
∂2

1 ∂3, {∂1 , ∗ , ∂3}
∂1 ∂

2
2 ∂3, { ∗ , ∂2 , ∂3}

∂1 ∂2 ∂
2
3 , { ∗ , ∗ , ∂3}

∂2
2 ∂3, { ∗ , ∂2 , ∂3}
∂2 ∂

2
3 , { ∗ , ∗ , ∂3}
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Remark 2.19. Every finite subsetM of Mon(D) can be augmented to a Janet complete finite
set by adding certain monomials which are products of some m ∈ M and a monomial which
is divisible by at least one non-multiplicative variable for m.

Proposition 2.20. Let I be a monomial ideal of D. Let an ordering of ∂1, . . . , ∂n be fixed.
There exists a unique finite Janet complete generating set of monomials for I which is minimal
with respect to set inclusion.

Definition 2.21. Let S ⊆ Mon(D). We refer to the minimal Janet complete superset of S as
the Janet completion of S. Its elements are the generators of cones in a cone decomposition
of the multiple-closed set generated by S, which we call a Janet decomposition.

Exercise. Write an algorithm which computes a Janet decomposition of the complement of
a multiple-closed set of monomials in Mon(D).

Cone decompositions of the complement of a multiple-closed set in Mon(D) which are
defined by Janet division will be referred to as Janet decompositions as well.

Exercise. Write an algorithm which computes the Janet completion of a given finite set of
monomials.

Definition 2.22. For any set S ⊆ Mon(D) of monomials, the generalized Hilbert series of S
is the formal power series

HS(∂1, . . . , ∂n) :=
∑
m∈S

m ∈ Z[[∂1, . . . , ∂n]] .

Remark 2.23. The Hilbert series usually encountered in commutative algebra is obtained
from the generalized Hilbert series as HS(λ, . . . , λ) for an indeterminate λ.

The next remark shows that the computation of the generalized Hilbert series of a set S
of monomials is trivial if a decomposition of S into disjoint cones is available.

Remark 2.24. Let C = (m,µ) be a cone. We use the geometric series
1

1− x
=
∑
i≥0

xi

to write down the generalized Hilbert series HC(∂1, . . . , ∂n) as follows:

HC(∂1, . . . , ∂n) =
m∏

x∈µ(1− x)
.

More generally, every decomposition of a Mon(D)-multiple-closed set S into disjoint cones
allows to compute the generalized Hilbert series of S by adding the generalized Hilbert series
of the cones. In an analogous way this applies to the complements of multiple-closed sets.

Example 2.25. The complement in Mon(D) of the multiple-closed set generated by ∂x∂y,
∂3
x∂z, ∂x∂2

y∂z, ∂2
x∂y∂

2
z in Example 2.5 admits the following Janet decomposition:

1, { ∗ , ∂y, ∂z },

∂x, { ∗ , ∗ , ∂z },

∂2
x, { ∗ , ∗ , ∂z },

∂3
x, {∂x, ∗ , ∗ }.

The corresponding generalized Hilbert series is

1

(1− ∂y)(1− ∂z)
+

∂x
1− ∂z

+
∂2
x

1− ∂z
+

∂3
x

1− ∂x
.
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2.2 Janet’s algorithm

Given a system of linear PDEs, Janet’s algorithm computes an equivalent system, called a
Janet basis, for which it is a straightforward task to decide whether another linear PDE is a
consequence of the system or not. The answer is obtained by trying to express the PDE as a
linear combination of partial derivatives of the Janet basis elements. This process is based on
a multivariate polynomial division for elements of D = K[∂1, . . . , ∂n], which requires a choice
of most significant term in each non-zero polynomial, called leading term.

Suppose that a total ordering > on Mon(D) is chosen which is compatible with multipli-
cation (i.e., composition of operators). By defining leading terms of PDEs with respect to >,
the leading terms of consequences of one PDE are predictable: the leading term of a derivative
of a PDE is the derivative of the leading term of the PDE.

A total ordering > with the above property also allows to easily determine the monomials
in ∂1, . . . , ∂n that do not occur in leading terms of consequences of a system of linear PDEs.
Hence, a Janet basis then also allows to determine all analytic solutions (around a sufficiently
generic point). By choosing the total ordering > appropriately, further tasks, e.g., elimination
of variables, can be solved as well.

The methods to be discussed in this section can be applied in a similar way to other
types of linear equations, e.g., difference equations, multidimensional discrete equations, time-
delay equations and other functional equations. The coefficients of these equations may be
constant or not, corresponding to commutative or non-commutative rings of operators, e.g.,
Ore algebras (cf., e.g., [CS98], [CQR05]). For example, singular points of differential equations
may be studied in terms of D-modules [Kas03, Cou95], i.e., modules over Weyl algebras and
related rings of differential operators.

Last but not least, Janet’s algorithm applies in the same way to systems of polynomial
equations, i.e., equations defining algebraic varieties. Hence, it is an alternative to Buch-
berger’s algorithm computing Gröbner bases. In fact, every Janet basis is a Gröbner basis.
Generalizations of Gröbner bases to non-commutative polynomial algebras have been studied
since a couple of decades, cf., e.g., [KRW90], [Kre93], [Mor94], [Lev05], [GL11]; for rings of
differential operators, cf., e.g., [CJ84], [Gal85], [IP98], [SST00]. Buchberger’s algorithm was
adapted to Ore algebras by F. Chyzak (cf. [Chy98], [CS98], where it is also applied to the
study of special functions and combinatorial sequences). Involutive divisions were studied for
the Weyl algebra in [HSS02] and were extended to non-commutative rings in [EW07].

In this section we confine ourselves to linear PDEs with constant coefficients, but these
may involve q unknown functions. Note that we ignore efficiency issues in favor of a concise
formulation of Janet’s algorithm.

Let D = K[∂1, . . . , ∂n], where K is a field of constants, q ∈ N and e1, . . . , eq the standard
basis vectors of the free left D-module D1×q. We define the set of monomials of D1×q to be

Mon(D1×q) :=

q⋃
i=1

Mon(D) ei .

Every p ∈ D1×q has a unique representation

p =

q∑
k=1

∑
m∈Mon(D)

ck,mmek (2.6)

as linear combination of monomials in Mon(D1×q) with coefficients ck,m ∈ K, where only
finitely many ck,m are non-zero.
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Definition 2.26. A term ordering > on Mon(D1×q) (or on D1×q) is a total ordering on
Mon(D1×q) which satisfies the following two conditions.

(a) For all 1 ≤ i ≤ n and 1 ≤ k ≤ q we have ∂j ek > ek.

(b) For all m1 ek, m2 el ∈ Mon(D1×q) the following implication holds:

m1 ek > m2 el =⇒ ∂jm1 ek > ∂jm2 el for all j = 1, . . . , n .

Let a term ordering > be fixed. For every p ∈ D1×q \ {0} the greatest monomial, with
respect to >, occurring (with non-zero coefficient) in the representation (2.6) of p is uniquely
determined and is called the leading monomial of p, denoted by lm(p). The coefficient of lm(p)
is called the leading coefficient of p, denoted by lc(p). For any subset S ⊆ D1×q we define

lm(S) := { lm(p) | 0 6= p ∈ S } .

Remark 2.27. Every term ordering onD1×q is a well-ordering, i.e., every descending sequence
of elements of Mon(D1×q) terminates.

Example 2.28. The lexicographical ordering (lex) on Mon(D) (which extends the ordering
∂1 > ∂2 > . . . > ∂n) is defined for monomials m1 = ∂a11 . . . ∂ann , m2 = ∂b11 . . . ∂bnn ∈ Mon(D) by

m1 > m2 :⇐⇒ m1 6= m2 and aj > bj for j = min { 1 ≤ i ≤ n | ai 6= bi } .

Example 2.29. The degree-reverse lexicographical ordering (degrevlex) on Mon(D) (extending
the ordering ∂1 > . . . > ∂n) is defined for m1 = ∂a11 . . . ∂ann , m2 = ∂b11 . . . ∂bnn ∈ Mon(D) by

m1 > m2 :⇐⇒


deg(m1) > deg(m2) or(

deg(m1) = deg(m2) and m1 6= m2 and aj < bj

for j = max { 1 ≤ i ≤ n | ai 6= bi }
)
,

where deg refers to the total degree.

Example 2.30. Two ways of extending a given term ordering >1 on Mon(D) to Mon(D1×q)
for q > 1 are often used. The term-over-position ordering (extending >1 and the total ordering
e1 > . . . > eq of the standard basis vectors) is defined for m1, m2 ∈ Mon(D) by

m1 ei > m2 ej :⇐⇒ m1 >1 m2 or (m1 = m2 and i < j) .

Accordingly, the position-over-term ordering (extending >1 and e1 > . . . > eq) is defined by

m1 ei > m2 ej :⇐⇒ i < j or (i = j and m1 >1 m2) .

In what follows, we assume that a term ordering > on D1×q is fixed.

Let M be a submodule of D1×q. Note that lm(M) is a Mon(D)-multiple-closed set. More
precisely, for each k ∈ {1, . . . , q},

{m ∈ Mon(D) | mek ∈ lm(M) }

is a Mon(D)-multiple-closed set as discussed in Section 2.1.
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Starting with a finite generating set L of M , Janet’s algorithm possibly removes elements
from L and inserts new elements of M into L repeatedly in order to finally achieve that the
Mon(D)-multiple-closed set generated by lm(L) equals lm(M). An element p ∈ L is removed
if it is reduced to zero by subtraction of suitable multiples of other elements of L.

We denote by D〈L 〉 the submodule of D1×q generated by L ⊆ D1×q.

For G ⊆ Mon(D1×q) we denote by [G ] the Mon(D)-multiple-closed set generated by G.
If G = {m1, . . . ,mr }, then we also write [m1, . . . ,mr ] for [G ].

Definition 2.31. Let T = { (b1, µ1), . . . , (bt, µt) } with bi ∈ D1×q \{0} and µi ⊆ { ∂1, . . . , ∂n }.

(a) The set T is Janet complete if { lm(b1), . . . , lm(bt) } equals its Janet completion and, for
each i ∈ {1, . . . , t}, µi is the set of multiplicative variables of the cone with generator
lm(bi) in the Janet decomposition { (lm(b1), µ1), . . . , (lm(bt), µt) } of [ lm(b1), . . . , lm(bt) ].

(b) An element p ∈ D1×q is Janet reducible modulo T if there exist (b, µ) ∈ T and a monomial
m ∈ Mon(D1×q) which occurs in p such that m ∈ Mon(µ) lm(b). In this case, (b, µ) is
called a Janet divisor of p. If p is not Janet reducible modulo T , then p is also said to
be Janet reduced modulo T .

The following algorithm subtracts suitable multiples of Janet divisors from a given element
p ∈ D1×q as long as a term in p is Janet reducible modulo T .

Algorithm 2.32 (Janet-reduce).

Input: p ∈ D1×q, T = { (b1, µ1), . . . , (bt, µt) }, and a term ordering > on D1×q, where T is
Janet complete (with respect to >, cf. Def. 2.31)

Output: r ∈ D1×q such that r + D〈 b1, . . . , bt 〉 = p + D〈 b1, . . . , bt 〉 and r is Janet reduced
modulo T

Algorithm:
1: p′ ← p; r ← 0

2: while p′ 6= 0 do
3: if ∃ (b, µ) ∈ T such that lm(p′) ∈ Mon(µ) lm(b) then // (b, µ) is a Janet divisor of p′

4: p′ ← p′ − lc(p′)
lc(b)

lm(p′)
lm(b) b

5: else
6: subtract the term of p′ with monomial lm(p′) from p′ and add it to r
7: end if
8: end while
9: return r

Remark 2.33. Algorithm 2.32 terminates because, as long as p′ is non-zero, the leading
monomial of p′ decreases with respect to the term ordering >, which is a well-ordering. Its
correctness is clear. The result r is uniquely determined for the given input because every
monomial has at most one Janet divisor in T , and also the course of Algorithm 2.32 is uniquely
determined as opposed to reduction procedures which apply multivariate polynomial division
without distinguishing between multiplicative and non-multiplicative variables.
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Remark 2.34. Let p1, p2 ∈ D1×q and T be as in the input of Algorithm 2.32. In general, the
equality p1 + D〈 b1, . . . , bt 〉 = p2 + D〈 b1, . . . , bt 〉 does not imply that the results of applying
Janet-reduce to p1 and p2, respectively, are equal. However, in Thm. 2.38 (d) it is shown that,
if T is a Janet basis, then the result of Janet-reduce constitutes a unique representative for
every coset in D1×q/D〈 b1, . . . , bt 〉. It is called the Janet normal form of p1 (or p2) modulo T .

Definition 2.35. Let T = { (b1, µ1), . . . , (bt, µt) } be Janet complete (as in Definition 2.31 (a)).
We write NF(p, T,>) for the result of Algorithm 2.32 (Janet-reduce) applied to p, T , >. The
set T is said to be passive if

NF(v · bi, T,>) = 0 for all v ∈ µi, i = 1, . . . , t. (2.7)

In this case T is also called a Janet basis for D〈 b1, . . . , bt 〉, and { b1, . . . , bt } is often referred
to as a Janet basis for D〈 b1, . . . , bt 〉 as well.

Remark 2.36. Let M be a submodule of D1×q. By applying Janet’s algorithm to a finite
generating set L of M , an ascending chain of multiple-closed subsets of lm(M) is constructed.
This chain terminates by Lemma 2.9. In each round, a Janet decomposition is computed for
the current multiple-closed set generated by the leading monomials of a generating set for M .
In order to obtain the minimal Janet complete set of monomials, the generating set for M is
first turned into an auto-reduced one, i.e., no leading monomial of a generator divides (in the
conventional sense) the leading monomial of another generator.

Let M = D〈 b1, . . . , bt 〉. Then every element of M is a D-linear combination of b1, . . . , bt.
Suppose that T is passive. Each summand kimi bi in such a linear combination, where ki ∈ K
and mi ∈ Mon(D) involves some variable that is non-multiplicative for bi, can be replaced
with a K-linear combination of elements in Mon(µ1) b1, . . . , Mon(µt) bt. Due to the passivity
condition (2.7), this can be achieved by applying successively Algorithm 2.32 to terms involving
only one non-multiplicative variable. This substitution process should deal with the largest
term with respect to > first. Elimination of all non-multiplicative variables demonstrates
that the leading monomial of every p ∈ M \ {0} has a Janet divisor in T . We conclude that
passivity of the Janet complete set T is equivalent to [ lm(b1), . . . , lm(bt) ] = lm(M).

Recall that for any set S we denote by P(S) the power set of S.

Algorithm 2.37 (JanetBasis).

Input: A finite set L ⊆ D1×q, a term ordering > on D1×q, and an ordering of ∂1, . . . , ∂n for
Janet division

Output: A finite subset J of D1×q × P({ ∂1, . . . , ∂n }) such that D〈 p | (p, µ) ∈ J 〉 = D〈L 〉
(and J = ∅ if and only if D〈L 〉 = {0})

Algorithm:
1: G← L

2: repeat
3: G← Auto-reduce(G, >) // cf. Rem. 2.36
4: J ← Janet-decompose(G)
5: P ← {NF(v · p, J,>) | (p, µ) ∈ J, v ∈ µ } // cf. Alg. 2.32
6: G← { p | (p, µ) ∈ J } ∪ P
7: until P ⊆ {0}
8: return J
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Theorem 2.38 ([Rob14], Thm. 2.1.43).

(a) Algorithm 2.37 terminates and is correct.

(b) A K-basis of D〈L 〉 is given by
⊎

(p,µ)∈J

Mon(µ)p, where J is the result of Algorithm 2.37.

In particular, every r ∈ D〈L 〉 has a unique representation

r =
∑

(p,µ)∈J

c(p,µ) p,

where each c(p,µ) ∈ D is a K-linear combination of elements in Mon(µ).

(c) The cosets in D1×q/D〈L 〉 with representatives in

Mon(D1×q) \ [ lm(p) | (p, µ) ∈ J ]

form a K-basis of D1×q/D〈L 〉.

(d) For every r1, r2 ∈ D1×q the following equivalence holds.

r1 + D〈L 〉 = r2 + D〈L 〉 ⇐⇒ NF(r1, J,>) = NF(r2, J,>).

We present a small example illustrating the idea of Janet’s algorithm.

Example 2.39. Let D = K[x, y] be the commutative polynomial algebra over a field K of
arbitrary characteristic or over K = Z. We choose the degree-reverse lexicographical ordering
on Mon(D) satisfying x > y (cf. Ex. 2.29). Let the ideal I of D be generated by

g1 := x2 − y, g2 := xy − y .

Using the ordering x, y of the variables, the Janet decomposition of the multiple-closed set
which is generated by the underlined leading monomials of g1 and g2 is

{ (x2, {x, y}), (xy, {y}) } .

This result indicates that we need to check whether f := x · g2 can be written as

f = c1 · (x2 − y) + c2 · (xy − y), c1 ∈ K[x, y], c2 ∈ K[y]. (2.8)

The monomials appearing in f = x2y − xy ∈ I lie in the cones (x2, {x, y}) and (xy, {y}),
respectively. Reduction yields g3 := y2 − y ∈ I, which does not have a representation as in
(2.8). So, we include g3 in our list of generators, and for this example, we already arrive at
the (minimal) Janet basis { (g1, {x, y}), (g2, {y}), (g3, {y}) } for I.

No division by any coefficient was necessary to arrive at a Janet basis for I. The statements
above therefore hold for a field K of any characteristic and for K = Z.

Remark 2.40. Janet’s algorithm can also be performed over the integers Z to obtain Janet
bases for submodules of Z[x1, . . . , xn]1×q. To this end, the monomial ordering < is extended to
terms a ·m, where a ∈ Z and m is a monomial, such that the absolute values of the coefficients
of two terms with equal monomials are compared to break ties. Essentially the only other
necessary modification of Janet’s algorithm is to replace Algorithm 2.32 by a corresponding
method which uses Euclidean division instead of exact division for the coefficients lc(p′), lc(b).
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Remark 2.41. The K-vector space F := homK(D,K) is a (left) D-module with action

D ×F −→ F : (d, f) 7−→ (a 7→ f(a · d)) ,

and the following K-bilinear form is non-degenerate in both arguments:

( , ) : D ×F −→ K : (d, f) 7−→ f(d) . (2.9)

Hence, D and F are dual to each other. The linear map D → D defined by right multiplication
by d and the linear map F → F given by left multiplication by d are adjoint to each other:

(a · d, f) = f(a · d) = (d · f)(a) = (a, d · f), a ∈ D, f ∈ F . (2.10)

Since every homomorphism f ∈ F is uniquely determined by its values for the elements of the
K-basis Mon(D) of D, we can write f in a unique way as a (not necessarily finite) formal sum∑

m∈Mon(D)

(m, f)m. (2.11)

Due to (2.10), for every d ∈ D the representation of d · f can be obtained from∑
m∈Mon(D)

(m, d · f)m =
∑

m∈Mon(D)

(m · d, f)m. (2.12)

By writing the monomials in the sum (2.11) in indeterminates z1, . . . , zn, we identify F
with the K-algebra K[[z1, . . . , zn]] of formal power series. It follows from (2.12) that the
(left) action on F of any monomial in D effects a shift of the coefficients of the power series
according to the exponent vector of the monomial, which is the same action as the one defined
by partial differentiation. Therefore, the K-vector space bases (zα/α! | α ∈ (Z≥0)n) and
(∂β | β ∈ (Z≥0)n) are dual to each other with respect to the pairing (2.9), i.e.,(

∂β,
∑

α∈(Z≥0)n cα
zα

α!

)
= cβ, β ∈ (Z≥0)n, α! := α1! · . . . · αn! .

Suppose that a system of (homogeneous) linear PDEs with constant coefficients for one un-
known function of n arguments is given. We compute a Janet basis J for the ideal of D which
is generated by the left hand sides p of these equations with respect to the term ordering >.
The differential equations are considered as linear equations for (∂β, f), β ∈ (Z≥0)n, where
f ∈ F is a formal power series solution, and using the term ordering >, we may solve each of
these equations for (lm(p), f). Then Janet’s algorithm partitions Mon(D) into a set of mono-
mials m for which (m, f) ∈ K can be chosen arbitrarily and a set S of monomials for which
(lm(p), f) ∈ K is uniquely determined by these choices. The latter set is the multiple-closed
subset S := [ lm(p) | (p, µ) ∈ J ] of Mon(D). In particular, the K-dimension of the space of
formal power series solutions, if finite, can be computed as the number of monomials in the
complement C of S in Mon(D). In fact, the generalized Hilbert series HC(∂1, . . . , ∂n) of C
enumerates a basis for the Taylor coefficients (∂β, f) of f whose values can be assigned freely.

M. Janet calls the monomials ∂β in Mon(D) \ S parametric derivatives because the cor-
responding Taylor coefficients (∂β, f) of a formal power series solution f can be chosen arbi-
trarily. The monomials in S are called principal derivatives [Jan29, e.g., no. 22, no. 38]. The
Taylor coefficients (∂β, f) which correspond to principal derivatives ∂β are uniquely deter-
mined by K-linear equations in terms of the Taylor coefficients of parametric derivatives. Of
course, the extension of this method of determining the formal power series solutions of a sys-
tem of linear partial differential equations is extended to the case of more than one unknown
function in a straightforward way by using submodules of D1×q instead of ideals of D.

Note that convergence of series solutions is to be investigated separately.
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For a similar treatment of partial difference equations, we refer to [OP01].

Remark 2.42. The previous remark also applies to linear systems of partial differential
equations whose coefficients are rational functions in the independent variables x1, . . . , xn, i.e.
D = K[∂1, . . . , ∂n] is replaced by Bn(K) := K(x1, . . . , xn)[∂1, . . . , ∂n]. Of course, in this case
a formal power series solution is only well-defined if the left submodule M of Bn(K)1×q which
represents the left hand sides of the equations is also a left submodule of A[∂1, . . . , ∂n]1×q,
where A is a K-subalgebra of Bn(K) whose elements do not have a pole in 0 ∈ Kn and the
Janet basis for M is computed within A[∂1, . . . , ∂n]1×q. In other words, a formal power series
solution is only well-defined if 0 ∈ Kn is not a zero of any denominator occurring in the course
of Janet’s algorithm.

Example 2.43. [Jan29, no. 23] Let us consider the heat equation

∂u

∂t
− ∂2u

∂x2
= 0 (2.13)

for an unknown real analytic function u of t and x. The corresponding operator is p :=
∂t− ∂2

x ∈ D := K[∂t, ∂x], where K = Q or R. Choosing a degree-reverse lexicographical term
ordering on D, the leading monomial of p is ∂2

x. The polynomial p forms a Janet basis for
the ideal of D it generates, and the parametric derivatives are given by ∂it , ∂

j
t ∂x, i, j ∈ Z≥0.

Hence, any choice of formal power series in t for u(t, 0) and ∂u
∂x(t, 0) uniquely determines

a formal power series solution u to (2.13). In this case, every choice of convergent power
series yields a convergent series solution u. On the other hand, using the lexicographical term
ordering extending t > x, the parametric derivatives are given by ∂ix, i ∈ Z≥0. Now, the choice
u(0, x) =

∑
i≥0 x

i determines a divergent series solution u.

Example 2.44. The (minimal) Janet basis for the system of linear PDEs in Example 2.5 is

∂2u

∂x ∂y
= 0, { ∗ , ∂y, ∂z },

∂3u

∂x2 ∂y
= 0, { ∗ , ∂y, ∂z },

∂4u

∂x3 ∂z
= 0, {∂x, ∗ , ∂z },

∂4u

∂x3 ∂y
= 0, {∂x, ∂y, ∂z }.

A Janet decomposition of the set of parametric derivatives is (cf. also Example 2.25)

1, { ∗ , ∂y, ∂z },
∂x, { ∗ , ∗ , ∂z },
∂2
x, { ∗ , ∗ , ∂z },
∂3
x, {∂x, ∗ , ∗ }.

The corresponding generalized Hilbert series is

1

(1− ∂y)(1− ∂z)
+

∂x
1− ∂z

+
∂2
x

1− ∂z
+

∂3
x

1− ∂x
.

Accordingly, a formal power series solution u of (2.5) is uniquely determined as

u(x, y, z) = f0(y, z) + x f1(z) + x2 f2(z) + x3 f3(x)

by any choice of formal power series f0, f1, f2, f3 of the indicated variables.
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3 Systems of nonlinear differential equations

The methods to be developed in this section allow to solve tasks (a), (b), (c) as stated in the
Introduction for systems of partial differential equations (PDEs) that are given by polynomials
in the unknown functions and their derivatives.

A system of partial differential equations and inequations (or simply a differential system)
S is given by

p1 = 0, p2 = 0, . . . , ps = 0, q1 6= 0, q2 6= 0, . . . , qt 6= 0, (3.1)

where p1, . . . , ps and q1, . . . , qt are polynomials in unknown functions u1, . . . , um of indepen-
dent variables z1, . . . , zn and their partial derivatives (of arbitrary order), s, t ∈ Z≥0.

Let Ω be an open and connected subset of Cn with coordinates z1, z2, . . . , zn. Then the
solution set of S on Ω is

SolΩ(S) := { f = (f1, . . . , fm) | fk : Ω→ C analytic, k = 1, . . . ,m,

pi(f) = 0, qj(f) 6= 0, i = 1, . . . , s, j = 1, . . . , t } .

Example 3.1. The following differential system for one unknown function u of independent
variables t and x is a combination of the Korteweg-de Vries equation (KdV, [BC80]) and a
(generalized) Wronskian determinant:

∂u

∂t
− 6u

∂u

∂x
+
∂3u

∂x3
= 0 ,

u
∂2u

∂t ∂x
− ∂u

∂t

∂u

∂x
= 0 .

If we denote partial derivatives by repeated indices, we may write it also as{
ut − 6uux + ux,x,x = 0 ,

u ut,x − ut ux = 0 .

Example 3.2. The Navier-Stokes equations describe the flow of an incompressible fluid, where
x, y, z are the spatial coordinates, t the time coordinate, (ux, uy, uz) the velocity vector, p the
pressure, ρ the density, (gx, gy, gz) the gravitational acceleration and µ is the viscosity of the
fluid [LL66, p. 54]:

ρ

(
∂ux
∂t

+ ux
∂ux
∂x

+ uy
∂ux
∂y

+ uz
∂ux
∂z

)
= −∂p

∂x
+ µ

(
∂2ux
∂x2

+
∂2ux
∂y2

+
∂2ux
∂z2

)
−µ ∂

∂x

(
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

)
+ ρ gx ,

ρ

(
∂uy
∂t

+ ux
∂uy
∂x

+ uy
∂uy
∂y

+ uz
∂uy
∂z

)
= −∂p

∂y
+ µ

(
∂2uy
∂x2

+
∂2uy
∂y2

+
∂2uy
∂z2

)
−µ ∂

∂y

(
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

)
+ ρ gy ,

ρ

(
∂uz
∂t

+ ux
∂uz
∂x

+ uy
∂uz
∂y

+ uz
∂uz
∂z

)
= −∂p

∂z
+ µ

(
∂2uz
∂x2

+
∂2uz
∂y2

+
∂2uz
∂z2

)
−µ ∂

∂z

(
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

)
+ ρ gz ,

∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

= 0 .
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The consequences of (3.1) are the partial differential equations for u1, . . . , um which are
obtained in a finite number steps from the following rules:

(a) The given equations p1 = 0, p2 = 0, . . . , ps = 0 are consequences of (3.1).

(b) If p = 0 is a consequence, then any partial derivative of p = 0 is a consequence.

(c) If p · q = 0 is a consequence and q is a factor of some qi, then p = 0 is a consequence.

(d) If p = 0 and r = 0 are consequences, then a p + b r = 0 are consequences for all
polynomials a and b in u1, . . . , um and their partial derivatives (of all orders).

Since this setup allows differential equations p = 0 to be differentiated, we are going to
work with a polynomial ring in u1, . . . , um which admits these differentiations.

Definition 3.3. A differential ring R with commuting derivations δ1, . . . , δn is a commutative
ring R endowed with maps δi : R→ R, satisfying

δi(r1 + r2) = δi(r1) + δi(r2), δi(r1 r2) = δi(r1) r2 + r1 δi(r2) for all r1, r2 ∈ R,

i = 1, . . . , n, and δi ◦ δj = δj ◦ δi for all 1 ≤ i, j ≤ n. A differential ring which is a field is
called a differential field, and similarly for a differential algebra over a differential field.

In what follows we only consider differential fields K of characteristic zero. Denote the
derivations of K by ∂1, . . . , ∂n.

Definition 3.4. The differential polynomial ring K{u1, . . . , um} in the differential indetermi-
nates u1, . . . , um is the commutative polynomial algebra K[(uk)J | 1 ≤ k ≤ m, J ∈ (Z≥0)n]
with infinitely many, algebraically independent indeterminates (uk)J , also called jet variables,
which represent the partial derivatives

∂J1+...+JnUk

∂zJ11 . . . ∂zJnn
, k = 1, . . . ,m , J ∈ (Z≥0)n ,

of smooth functions U1, . . . , Um of independent variables z1, . . . , zn. We use uk as a synonym
for (uk)(0,...,0), k = 1, . . . , m. The ring K{u1, . . . , um} is considered as differential ring with
commuting derivations δ1, . . . , δn defined by extending

δi uk := (uk)1i , i = 1, . . . , n , k = 1, . . . ,m ,

additively, respecting the product rule of differentiation, and restricting to the derivation ∂i
on K. (Here 1i denotes the multi-index (0, . . . , 0, 1, 0, . . . , 0) of length n with 1 at position
i.) More generally, the differential polynomial ring may be constructed with coefficients in a
differential ring rather than in a differential field in the same way.

Recall that an open and connected subset Ω of Cn was considered. The set of (complex)
meromorphic functions on Ω form a fieldK, and together with the partial differential operators
δ1, . . . , δn with respect to z1, . . . , zn, respectively, K is a differential field.

A suitable choice of differential polynomial ring R = K{u1, . . . , um} allows to consider the
left hand sides p1, . . . , ps, q1, . . . , qt in the system of nonlinear PDEs (3.1) as elements of R.
Moreover, the left hand sides of all consequences of the system are elements of R as well. In
fact, we may consider the differential ideal I of R which is generated by p1, . . . , ps, i.e., the
smallest ideal of R which contains p1, . . . , ps and all their derivatives. This is only a first step,
because in general I does not contain all consequences of (3.1). Before we study these ideas
further, we first deal with algebraic systems (e.g., in (uk)J , where 1 ≤ k ≤ m, J ∈ (Z≥0)n).
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3.1 Thomas decomposition of algebraic systems

Let K be a field of characteristic zero and R = K[x1, . . . , xn] the polynomial algebra with
indeterminates x1, . . . , xn over K. We denote by K an algebraic closure of K.

Definition 3.5. An algebraic system S, defined over R, is given by finitely many equations
and inequations

p1 = 0, p2 = 0, . . . , ps = 0, q1 6= 0, q2 6= 0, . . . , qt 6= 0, (3.2)

where p1, . . . , ps, q1, . . . , qt ∈ R and s, t ∈ Z≥0. The solution set of S in Kn is

SolK(S) := { a ∈ Kn | pi(a) = 0 and qj(a) 6= 0 for all 1 ≤ i ≤ s, 1 ≤ j ≤ t } .

We fix a total ordering > on the set {x1, . . . , xn} allowing us to consider every non-constant
element p of R as a univariate polynomial in the greatest variable with respect to > which
occurs in p, with coefficients which are themselves univariate polynomials in lower ranked
variables, etc. Without loss of generality we may assume that

x1 > x2 > . . . > xn.

The choice of > corresponds to a choice of projections

π1 : K
n −→ K

n−1
: (a1, a2, . . . , an) 7−→ (a2, a3, a4, . . . , an),

π2 : K
n −→ K

n−2
: (a1, a2, . . . , an) 7−→ (a3, a4, . . . , an),

...
...

πn−1 : K
n −→ K : (a1, a2, . . . , an) 7−→ an.

Thus, the recursive representation of polynomials is motivated by considering the (k − 1)-st
projection πk−1(SolK(S)) of the solution set as fibered over the k-th projection πk(SolK(S)),
for k = 1, . . . , n−1, where we define π0 := idKn (cf. also [Ple09a]). The purpose of a Thomas
decomposition of SolK(S), to be defined below, is to clarify this fibration structure. The
solution set SolK(S) is partitioned into subsets SolK(S1), . . . , SolK(Sr) in such a way that,
for each i = 1, . . . , r and k = 1, . . . , n− 1, the fiber cardinality |π−1

k−1({ a })| does not depend
on the choice of a ∈ πk(SolK(Si)). In terms of the defining equations and inequations in (3.2),
the fundamental obstructions to this uniform behavior are zeros of the leading coefficients of
pi or qj and zeros of pi or qj of multiplicity greater than one.

Definition 3.6. Let p ∈ R \K.

a) The greatest indeterminate with respect to > which occurs in p is referred to as the
leader of p and is denoted by ld(p).

b) For v = ld(p) we denote by degv(p) the degree of p in v.

c) The coefficient of the highest power of ld(p) occurring in p is called the initial of p and
is denoted by init(p).

d) The discriminant of p is defined as

disc(p) := (−1)d(d−1)/2 res

(
p,

∂p

∂ ld(p)
, ld(p)

)
/ init(p), d = degld(p)(p),
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where res(p, q, v) is the resultant of p and q with respect to the variable v.
(Note that disc(p) is a polynomial because init(p) divides res(p, ∂p/∂ ld(p), ld(p)): for
p = cd v

d + cd−1 v
d−1 + . . .+ c1 v + c0 the determinant

res(p, ∂p/∂ ld(p), ld(p)) := det



cd . . . . . . c1 c0

cd . . . . . . c1 c0

. . . . . .
cd . . . . . . c1 c0

d cd . . . 2 c2 c1

d cd . . . 2 c2 c1

. . . . . .
d cd . . . 2 c2 c1

d cd . . . 2 c2 c1


has a column all of whose entries are divisible by cd = init(p).)

Both init(p) and disc(p) are elements of the polynomial algebra K[x | x < ld(p)]. The
zeros of a univariate polynomial with multiplicity greater than one are the common zeros of
the polynomial and its derivative. The solutions of disc(p) = 0 in Kn−k, where ld(p) = xk,
are therefore those tuples (ak+1, ak+2, . . . , an) for which the substitution

xk+1 = ak+1, xk+2 = ak+2, . . . , xn = an

in p results in a univariate polynomial with a zero of multiplicity greater than one.

Definition 3.7. An algebraic system S, defined over R, as in (3.2) is said to be simple (with
respect to >) if the following three conditions hold.

a) For all i = 1, . . . , s and j = 1, . . . , t we have pi 6∈ K and qj 6∈ K.

b) The leaders of the left hand sides of the equations and inequations in S are pairwise
distinct, i.e., |{ ld(p1), . . . , ld(ps), ld(q1), . . . , ld(qt) }| = s+ t.

c) For every r ∈ { p1, . . . , ps, q1, . . . , qt }, if ld(r) = xk, then neither the equation init(r) = 0
nor the equation disc(r) = 0 has a solution (ak+1, ak+2, . . . , an) in πk(SolK(S)).

Subsets of non-constant polynomials in R with pairwise distinct leaders (i.e., satisfying
a) and b)) are also referred to as triangular sets (cf., e.g., [ALMM99], [Hub03a, Hub03b],
[Wan01]).

Remark 3.8. A simple algebraic system S admits the following solution procedure, which
also shows that its solution set is not empty. Let S<k be the subset of S consisting of the
equations p = 0 and inequations q 6= 0 with ld(p) < xk and ld(q) < xk. The fibration structure
implied by c) ensures that, for every k = 1, . . . , n− 1, every solution

(ak+1, ak+2, . . . , an) ∈ Kn−k

in πk(SolK(S)) = πk(SolK(S<k)) can be extended to a solution

(ak, ak+1, . . . , an) ∈ Kn−(k−1)

in πk−1(SolK(S)). If S contains an equation p = 0 with leader xk, then there exist exactly
degxk(p) such extensions (because zeros with multiplicity greater than one are excluded by
the non-vanishing discriminant). If S contains an inequation q 6= 0 with leader xk, all ak ∈ K
except degxk(q) elements define a tuple (ak, ak+1, . . . , an) as above. If no equation and no
inequation in S has leader xk, then ak ∈ K can be chosen arbitrarily.
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Definition 3.9. Let S be an algebraic system, defined over R. A Thomas decomposition of
S (or SolK(S)) with respect to > is a collection of finitely many algebraic systems S1, . . . , Sr,
each of which is defined over R and is simple, such that SolK(S) is the disjoint union of the
solution sets SolK(S1), . . . , SolK(Sr).

We outline a method for computing a Thomas decomposition of algebraic systems.

Remark 3.10. Given S as in (3.2) and a total ordering > on {x1, . . . , xn}, a Thomas decom-
position of S with respect to > can be constructed by combining Euclid’s algorithm with a
splitting strategy.

First of all, if S contains an equation c = 0 with 0 6= c ∈ K or the inequation 0 6= 0, then
S is discarded because it has no solutions. Moreover, from now on the equation 0 = 0 and
inequations c 6= 0 with 0 6= c ∈ K are supposed to be removed from S.

An elementary step of the algorithm applies a pseudo-division to a pair p1, p2 of non-
constant polynomials in R with the same leader xk and degxk(p1) ≥ degxk(p2). The result is
a pseudo-remainder

r = c1 · p1 − c2 · p2 , where c1, c2 ∈ R , (3.3)

and r is constant or has leader less than xk or has leader xk and degxk(r) < degxk(p1). Since
the coefficients of p1 and p2 are polynomials in lower ranked variables, multiplication of p1 by
a non-constant polynomial c1 may be necessary in general to perform the reduction in R (and
not in its field of fractions). Choosing c1 as a suitable power of init(p2) always achieves this.

In order to turn S into a triangular set, the algorithm deals with three kinds of subsets of
S of cardinality two. Firstly, each pair of equations p1 = 0, p2 = 0 in S with ld(p1) = ld(p2)
is replaced with the single equation r = 0, where r is the result of applying Euclid’s algorithm
to p1 and p2, considered as univariate polynomials in their leader, using the above pseudo-di-
vision. (If this computation was stable under substitution of values for lower ranked variables
in p1 and p2, then r would be the greatest common divisor of the specialized polynomials.)

The solution set of the system is supposed not to change, when the equation p1 = 0 is
replaced with the equation r = 0 given by the pseudo-reduction (3.3). Therefore, we assume
that the polynomial c1, and hence init(p2), does not vanish on the solution set of the system.
In order to ensure this condition, a preparatory step splits the system into two, if necessary,
and adds the inequation init(p2) 6= 0 to one of them and the equation init(p2) = 0 to the
other. The algorithm then deals with both systems separately. These case distinctions also
allow to arrange for the part of condition c) in Definition 3.7 which concerns initials.

Secondly, let p = 0, q 6= 0 be in S with ld(p) = ld(q) = xk. If degxk(p) ≤ degxk(q), then
q 6= 0 is replaced with r 6= 0, where r is the result of applying the pseudo-division (3.3) to q
and p. Otherwise, Euclid’s algorithm is applied to p and q, keeping track of the coefficients
used for the reductions as in (3.3). Given the result r, the system is then split into two, adding
the conditions r 6= 0 and r = 0, respectively. The inequation q 6= 0 is removed from the first
new system, because p = 0 and q 6= 0 have no common solution in that case. The assumption
r = 0 and the bookkeeping allows to divide p by the common factor of p and q (modulo left
hand sides of equations with smaller leader). The left hand side of p = 0 is replaced with
that quotient in the second new system. Not all of these cases need a closer inspection. For
instance, if p divides q, then the solution set of S is empty and S is discarded.

Thirdly, for a pair q1 6= 0, q2 6= 0 in S with ld(q1) = ld(q2), Euclid’s algorithm is applied
to q1 and q2 in the same way as above. Keeping track of the coefficients used in intermediate
steps allows to determine the least common multiple m of q1 and q2, which again depends on
distinguishing the cases whether the result of Euclid’s algorithm vanishes or not. The pair
q1 6= 0, q2 6= 0 is then replaced with m 6= 0.
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The part of condition c) in Definition 3.7 regarding discriminants is taken care of by
applying Euclid’s algorithm as above to p and ∂p/∂ ld(p), where p is the left hand side of
an equation or inequation. Bookkeeping allows to determine the square-free part of p, which
depends again on case distinctions.

Expressions tend to grow very quickly when performing these reductions, so that an ap-
propriate strategy is essential for dealing with non-trivial systems. Apart from dividing by
the content (in K) of polynomials, in intermediate steps of Euclid’s algorithm the coefficients
should be reduced modulo equations in the system with lower ranked leaders. In practice,
subresultant computations (cf., e.g., [Mis93]) allow to diminish the growth of coefficients sig-
nificantly.

Termination of the procedure sketched above depends on the organization of its steps.
One possible strategy is to maintain an intermediate triangular set, reduce new equations and
inequations modulo the equations in the triangular set, and select among these results the one
with smallest leader and least degree, preferably an equation, for insertion into the triangular
set. If the set already contains an equation or inequation with the same leader, then the pair
is treated as discussed above. Since equations are replaced with equations of smaller degree
and inequations are replaced with equations if possible or with the least common multiple of
inequations, this strategy terminates after finitely many steps.

For more details on the algebraic part of Thomas’ algorithm, we refer to [BGL+12], [Bäc14],
and [Rob14, Subsect. 2.2.1].

An implementation of Thomas’ algorithm for algebraic systems was developed by T. Bäch-
ler at RWTH Aachen University as Maple package AlgebraicThomas [BLH].

In what follows, variables are underlined to emphasize that they are leaders of polynomials
with respect to the fixed total ordering >.

Example 3.11. Let us compute a Thomas decomposition of the algebraic system

x2 + y2 − 1 = 0

consisting of one equation, defined over R = Q[x, y], with respect to x > y. First we set
p1 := x2 + y2 − 1. Then we have ld(p1) = x and init(p1) = 1 and

disc(p1) = −4 y2 + 4 .

We distinguish the cases whether or not p1 = 0 has a solution which is also a zero of disc(p1),
or equivalently, of y2 − 1. In other words, we replace the original algebraic system with two
algebraic systems which are obtained by adding the inequation y2 − 1 6= 0 or the equation
y2−1 = 0. The first system is readily seen to be simple, whereas the second one is transformed
into a simple system by taking the difference of the two equations and computing a square-free
part. Clearly, the solution sets of the two resulting simple systems form a partition of the
solution set of p1 = 0. We obtain the Thomas decomposition

x2 + y2 − 1 = 0

y2 − 1 6= 0

x = 0

y2 − 1 = 0

In this example, all points of SolK({ p1 = 0 }) for which the projection π1 onto the y-axis has
fibers of an exceptional cardinality have real coordinates, and the significance of the above
case distinction can be confirmed graphically.
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(x, y)

t

Figure 3: Stereographic projection from a circle

As a further illustration let us augment the original system by the equation which expresses
the coordinate t of the point of intersection of the line through the two points (0, 1) and (x, y)
on the circle with the x-axis (stereographic projection, cf. Figure 3): x2 + y2 − 1 = 0

(1− y) t− x = 0

A Thomas decomposition with respect to the ordering x > y > t is obtained as follows. We
set p2 := x+ t y − t. Since ld(p1) = ld(p2), we apply polynomial division:

p1 − (x− t y + t) p2 = (1 + t2) y2 − 2 t2 y + t2 − 1 = (y − 1) ((1 + t2) y − t2 + 1) .

Replacing p1 with the remainder of this division does not alter the solution set of the algebraic
system. It is convenient (but not necessary) to split the system into two systems according to
the factorization of the remainder:

x+ t y − t = 0

(1 + t2) y − t2 + 1 = 0

y − 1 6= 0


x+ t y − t = 0

y − 1 = 0

Another polynomial division reveals that the equation and the inequation with leader y in the
first system have no common solutions. Therefore, the inequation can be omitted from that
system. The initial of the equation has to be investigated. In fact, the assumption 1 + t2 = 0
leads to a contradiction. Finally, the equation with leader y can be used to eliminate y in the
equation with leader x:

(1 + t2) (x+ t y − t)− t ((1 + t2) y − t2 + 1) = (1 + t2)x− 2 t .

A similar simplification can be applied to the second system above. We obtain the Thomas
decomposition

(1 + t2)x− 2 t = 0

(1 + t2) y − t2 + 1 = 0

t2 + 1 6= 0

x = 0

y − 1 = 0

from which a rational parametrization of the circle can be read off.

Remark 3.12. A Thomas decomposition of an algebraic system is not uniquely determined.
It depends on the chosen total ordering >, the order in which intermediate systems are dealt
with and other choices, such as whether factorizations of left hand sides of equations are taken
into account or not.
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According to Hilbert’s Nullstellensatz (cf., e.g., [Eis95]), the solution sets V of systems
of polynomial equations in x1, . . . , xn in K

n are in one-to-one correspondence with their
vanishing ideals in R

IR(V ) := { p ∈ R | p(a) = 0 for all a ∈ V } ,

and these are the radical ideals of R, i.e., the ideals I of R which equal their radicals
√
I := { p ∈ R | pr ∈ I for some r ∈ Z≥0 } .

The solution sets V can then be considered as the closed subsets of Kn with respect to the
Zariski topology.

The fibration structure of a simple algebraic system S allows to deduce that the polynomi-
als in R which vanish on SolK(S) are precisely those polynomials in R whose pseudo-remain-
ders modulo p1, . . . , ps are zero, where p1 = 0, . . . , ps = 0 are the equations in S. If E is the
ideal of R generated by p1, . . . , ps and q the product of all init(pi), then these polynomials
form the saturation ideal

E : q∞ := { p ∈ R | qr · p ∈ E for some r ∈ Z≥0 } .

In particular, simple algebraic systems admit an effective way to decide membership of a
polynomial to the associated radical ideal (cf. also Proposition 3.30 below).

Proposition 3.13 ([Rob14], Prop. 2.2.7). Let the algebraic system S given by

p1 = 0, p2 = 0, . . . , ps = 0, q1 6= 0, q2 6= 0, . . . , qt 6= 0,

be simple, let E be the ideal of R generated by p1, . . . , ps, and q the product of all init(pi).
Then E : q∞ consists of all polynomials in R which vanish on SolK(S). In particular, E : q∞

is a radical ideal. Given p ∈ R, we have p ∈ E : q∞ if and only if the pseudo-remainder of p
modulo p1, . . . , ps is zero.

Example 3.14. Continuing Example 3.11, let E be the ideal of R generated by the left hand
sides of the equations of the simple algebraic system

(1 + t2)x− 2 t = 0

(1 + t2) y − t2 + 1 = 0

t2 + 1 6= 0

and define q = 1 + t2. Moreover, let p = (1 − t2)x + 2 t y ∈ R. The pseudo-remainder of p
modulo the equations of the first simple algebraic system displayed at the end of Example 3.11
is computed as follows. First we have

p′ := (1 + t2) p− (1− t2)
[
(1 + t2)x− 2 t

]
= 2 (1 + t2) t y + 2 (1− t2) t .

Then we have
r := p′ − 2 t

[
(1 + t2) y − t2 + 1

]
= 0 .

Since the pseudo-remainder r is zero, we conclude that p ∈ E : q∞.
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3.2 Thomas decomposition of differential systems

Let K be the differential field of meromorphic functions on an open and connected subset Ω of
Cn with coordinates z1, . . . , zn. We define the differential polynomial ring R = K{u1, . . . , um}
and ∆ := { ∂1, . . . , ∂n }.

Definition 3.15. A differential system S, defined over R = K{u1, . . . , um}, is given by finitely
many equations and inequations

p1 = 0, p2 = 0, . . . , ps = 0, q1 6= 0, q2 6= 0, . . . , qt 6= 0, (3.4)

where p1, . . . , ps, q1, . . . , qt ∈ R and s, t ∈ Z≥0. The solution set of S is

SolΩ(S) := { f = (f1, . . . , fm) | fk : Ω→ C analytic, k = 1, . . . ,m,

pi(f) = 0, qj(f) 6= 0, i = 1, . . . , s, j = 1, . . . , t }.

Remark 3.16. Since each component fk of a solution of (3.4) is assumed to be analytic,
the equations pi = 0 and inequations qj 6= 0 (and their consequences) can be translated into
algebraic conditions on the Taylor coefficients of power series expansions of f1, . . . , fm (around
a point in Ω). An inequation q 6= 0 then turns into a disjunction of algebraic inequations for
all coefficients which result from substitution of power series expansions for u1, . . . , um in q.

An appropriate choice of Ω ⊆ Cn can often only be made after the formal treatment of a
given differential system by methods to be discussed below (as, e.g., singularities of coefficients
in differential consequences will only be detected during that process). In general, we assume
that Ω is chosen in such a way that the given systems have analytic solutions on Ω.

Clearly, by neglecting the derivations on R = K{u1, . . . , um}, a differential system can
be considered as an algebraic system in the finitely many variables (ui)J which occur in
the equations and inequations. The same recursive representation of polynomials as in the
algebraic case is employed, but the total ordering on the set of variables (ui)J is supposed to
respect the action of the derivations. Then the methods of the previous section on algebraic
systems are applicable.

Definition 3.17. A ranking > on R = K{u1, . . . , um} is a total ordering on the set

Mon(∆)u := { (uk)J | 1 ≤ k ≤ m, J ∈ (Z≥0)n }

such that for all j ∈ {1, . . . , n}, k, k1, k2 ∈ {1, . . . ,m}, J1, J2 ∈ (Z≥0)n we have

a) ∂j uk > uk and

b) (uk1)J1 > (uk2)J2 implies ∂j (uk1)J1 > ∂j (uk2)J2 .

Remark 3.18. Every ranking > on R is a well-ordering (cf., e.g., [Kol73, Ch. 0, Sect. 17,
Lemma 15]), i.e., every descending sequence of elements of Mon(∆)u terminates.

Example 3.19. On the differential polynomial ring K{u} (i.e., with m = 1) with derivations
∂1, . . . , ∂n the degree-reverse lexicographical ranking (with ∂1 u > ∂2 u > . . . > ∂n u) is defined
for uJ , uJ ′ , J = (j1, . . . , jn), J ′ = (j′1, . . . , j

′
n) ∈ (Z≥0)n, by

uJ > uJ ′ :⇐⇒


j1 + . . .+ jn > j′1 + . . .+ j′n or(

j1 + . . .+ jn = j′1 + . . .+ j′n and J 6= J ′ and

ji < j′i for i = max { 1 ≤ k ≤ n | jk 6= j′k }
)
.

For instance, if n = 3, we have u(1,2,1) > u(1,2,0) > u(2,0,1).
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In what follows, we assume that a ranking > on R = K{u1, . . . , um} is fixed. For each
p ∈ R \ K, the leader ld(p) and the initial init(p) are defined as in the previous section on
algebraic systems. With the aim of introducing simple differential systems (Def. 3.24) we
discuss pseudo-division for differential polynomials first.

Remark 3.20. Let p1, p2 ∈ R be two non-constant differential polynomials. If p1 and p2 have
the same leader (uk)J and the degree of p1 in (uk)J is greater than or equal to the degree of
p2 in (uk)J , then the same pseudo-division as in (3.3) yields a remainder which is either zero,
or has leader less than (uk)J , or has leader (uk)J and smaller degree in (uk)J than p1.

More generally, if ld(p1) = θ ld(p2) for some θ ∈ Mon(∆), then this pseudo-division can be
applied with p2 replaced with θ p2. Note that, by condition b) of the definition of a ranking,
we have ld(θ p2) = θ ld(p2), and that, if θ 6= 1, the degree of θ p2 in θ ld(p2) is one, so that the
reduction can be applied without assumption on the degree of p2 in ld(p2). Then c1 in (3.3)
is again chosen as a suitable power of init(θ p2). In case θ 6= 1 we have

init(θ p2) =
∂p2

∂ ld(p2)
=: sep(p2) ,

and this differential polynomial is referred to as the separant of p2.
In order not to change the solution set of a differential system, when p1 = 0 is replaced

with r = 0, where r is the result of a reduction of p1 modulo p2 or θ p2 as above, it is assumed
that init(p2) and sep(p2) do not vanish on the solution set of the system. By definition of
the separant and the discriminant (cf. Def. 3.6 d)), non-vanishing of sep(p2) follows from non-
vanishing of disc(p2), as ensured by the algebraic part of Thomas’ algorithm (cf. Rem. 3.10).

We assume now that the given differential system is simple as an algebraic system (cf.
Def. 3.7); it could be one of the systems resulting from the algebraic part of Thomas’ algorithm.

Remark 3.21. The symmetry of the second derivatives ∂i ∂j uk = ∂j ∂i uk (and similarly for
higher order derivatives) imposes necessary conditions on the solvability of a system of partial
differential equations. Taking identities like these into account and forming linear combi-
nations of (derivatives of) the given equations may produce differential consequences with
lower ranked leaders. In order to obtain a complete set of algebraic conditions on the Taylor
coefficients of an analytic solution, the system has to be augmented by these integrability
conditions in general. If a system of partial differential equations admits a translation into
algebraic conditions on the Taylor coefficients such that no further integrability conditions
have to be taken into account, then it is said to be formally integrable.

Definition 3.22. Each equation pi = 0 in a differential system is assigned the set of admissible
derivations µ(θi,Mk), where ld(pi) = θi uk and

Mk := { θ ∈ Mon(∆) | θ uk ∈ { ld(p1), . . . , ld(ps) } } (3.5)

is the set of all monomials which define leaders ld(pi) involving the same differential indeter-
minate uk. We refer to d pi for d ∈ Mon(µ(θi,Mk)) as the admissible derivatives of pi.

Formal integrability of a differential system is then decided by applying to each equation
pi = 0 every of its non-admissible derivations d ∈ µ(θi,Mk) and computing the pseudo-re-
mainder of d pi modulo p1, . . . , ps and their admissible derivatives. The restriction of the
pseudo-division to admissible derivatives requires Mk to be Janet complete (cf. Def. 2.17). If
one of these pseudo-remainders is non-zero, then it is added as a new equation to the system,
and the augmented system has to be treated by the algebraic part of Thomas’ algorithm again.
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Definition 3.23. A system { p1 = 0, . . . , ps = 0 } of PDEs, where p1, . . . , ps ∈ R \ K, is
said to be passive if the following two conditions hold for ld(p1) = θ1 uk1 , . . . , ld(ps) = θs uks ,
where θi ∈ Mon(∆), ki ∈ {1, . . . ,m}.

a) For all k ∈ {1, . . . ,m}, the set Mk defined in (3.5) is Janet complete.

b) For all i ∈ {1, . . . , s} and all non-admissible derivations d ∈ µ(θi,Mki), the pseudo-re-
mainder of d pi modulo p1, . . . , ps and their admissible derivatives is zero.

Definition 3.24. A differential system S, defined over R, as in (3.4) is said to be simple (with
respect to >) if the following three conditions hold.

a) The system S is simple as an algebraic system (in the finitely many variables (ui)J which
occur in the equations and inequations of S, totally ordered by >).

b) The system { p1 = 0, . . . , ps = 0 } is passive.

c) The left hand sides of the inequations q1 6= 0, . . . , qt 6= 0 equal their pseudo-remainders
modulo p1, . . . , ps and their derivatives.

Definition 3.25. Let S be a differential system, defined over R. A Thomas decomposition of
S (or of SolΩ(S)) with respect to > is a collection of finitely many simple differential systems
S1, . . . , Sr, defined over R, such that the solution set SolΩ(S) of S is the disjoint union of the
solution sets SolΩ(S1), . . . , SolΩ(Sr).

Remark 3.26. Given S as in (3.4) and a ranking on R, a Thomas decomposition of S with
respect to > can be computed by interweaving the algebraic part discussed in Subsection 3.1
and differential reduction and completion with respect to Janet division.

First of all, a Thomas decomposition of S, considered as an algebraic system, is computed.
Each of the resulting simple algebraic systems is then treated as follows. Differential pseu-
do-division is applied to pairs of distinct equations with leaders θ1 uk and θ2 uk such that
θ1 | θ2 until either a non-zero pseudo-remainder is obtained or no such further reductions are
possible. Non-zero pseudo-remainders are added to the system, the algebraic part of Thomas’
algorithm is applied again, and the process is repeated. Once the system is auto-reduced in
this sense, then it is possibly augmented with certain derivatives of equations so that the sets
Mk defined in (3.5) are Janet complete. Then it is checked whether the system is passive. If
a non-zero remainder is obtained by a pseudo-division of a non-admissible derivative modulo
the equations and their admissible derivatives, then the algebraic part of Thomas’ algorithm
is applied again to the augmented system. Otherwise, the system is passive. Finally, the left
hand side of each inequation is replaced with its pseudo-remainder modulo the equations and
their derivatives, in order to ensure condition c) of Definition 3.24. The main reason why this
procedure terminates is Dickson’s Lemma, which shows that the ascending sequence of ideals
of the semigroup Mon(∆) formed by the monomials θ defining leaders of equations (for each
differential indeterminate) becomes stationary after finitely many steps.

For more details on the differential part of Thomas’ algorithm, we refer to [BGL+12],
[LH14], and [Rob14, Subsect. 2.2.2].

An implementation of Thomas’ algorithm for differential systems was developed by M. Lan-
ge-Hegermann at RWTH Aachen University as Maple package DifferentialThomas [BLH].

When displaying a simple differential system we indicate next to each equation its set of
admissible derivations.
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Example 3.27. Let us consider the ODE (discussed in [Inc56, Example in Sect. 4.7])(
∂u

∂x

)3

− 4xu(x)
∂u

∂x
+ 8u(x)2 = 0.

The left hand side is represented by the element p := u3
x − 4xuux + 8u2 of the differential

polynomial ring R = K{u} with one derivation ∂x, where K = Q(x) is the field of rational
functions in x, endowed with differentiation with respect to x.

The initial of p is constant, the separant of p is 3u2
x−4xu. The algebraic part of Thomas’

algorithm only distinguishes the cases whether the discriminant of p vanishes or not. We have

disc(p) = − res(p, sep(p), ux) = −64u3 (27u− 4x3).

This case distinction leads to the Thomas decomposition

ux
3 − 4xuux + 8u2 = 0, {∂x}

(27u− 4x3)u 6= 0 (27u− 4x3)u = 0, {∂x}

Since both systems contain only one equation, no differential reductions are necessary. The
second simple system could be split into two with equations 27u − 4x3 = 0 and u = 0,
respectively. The solutions of the first simple system are given by u(x) = c (x− c)2, where c is
an arbitrary non-zero constant. The solutions u(x) = 0 and u(x) = 4

27 x
3 of the second simple

system are called singular solutions, the latter one being an envelope of the general solution.

More about singular solutions can be found, e.g., in [Dar73], [Ham93], [Rit36], [Hub97].

Example 3.28. Let us compute a Thomas decomposition of the system of (nonlinear) PDEs
∂2u

∂x2
− ∂2u

∂y2
= 0,

∂u

∂x
− u2 = 0

for one unknown function u(x, y). Define the elements p1 := ux,x − uy,y and p2 := ux − u2 of
the differential polynomial ring R = Q{u} with commuting derivations ∂x, ∂y. We choose the
degree-reverse lexicographical ranking > on R with ∂x u > ∂y u (cf. Example 3.19).

Since the monomial ∂x defining the leader of p2 divides the monomial ∂2
x defining the

leader of p1, differential pseudo-division is applied and p1 is replaced with

p3 := p1 − ∂x p2 + 2u p2 = uy,y − 2u3 .

Janet division associates the sets of admissible derivations to the equations as follows: ux − u2 = 0, {∂x, ∂y}

uy,y − 2u3 = 0, { ∗ , ∂y}

The set of monomials { ∂x, ∂2
y } defining the leaders ux and uy,y is Janet complete. The check

whether the above system is passive involves the following reduction:

∂x p3 − ∂2
y p2 + 6u2 p2 − 2u p3 = 2 (uy + u2) (uy − u2) .
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This non-zero remainder is a differential consequence which is added as an equation to the
system. In fact, the system can be split into two systems according to the given factorization.
For both systems a differential reduction of p3 modulo the chosen factor is applied because
the monomial ∂y defining the new leader divides the monomial ∂y,y defining ld(p3). In both
cases the remainder is zero, the sets of monomials defining leaders are Janet complete, and
the passivity check confirms formal integrability. We obtain the Thomas decomposition

ux − u2 = 0, {∂x, ∂y}

uy + u2 = 0, { ∗ , ∂y}

ux − u2 = 0, {∂x, ∂y}

uy − u2 = 0, { ∗ , ∂y}

u 6= 0.

If the above factorization is ignored, then the discriminant of p4 := u2
y − u4 needs to be

considered, which implies vanishing or non-vanishing of the separant 2uy. This case distinction
leads to a different Thomas decomposition.

A Thomas decomposition of a differential system is not uniquely determined. In the special
case of a system S of linear partial differential equations no case distinctions are necessary,
and the single simple system in any Thomas decomposition of S is a Janet basis for S. Pseu-
do-reduction of a differential polynomial modulo the equations of a simple differential system
and their derivatives decides membership to the corresponding saturation ideal.

Proposition 3.29 ([Rob14], Prop. 2.2.50). Let S be a simple differential system, defined over
R, with equations p1 = 0, . . . , ps = 0. Moreover, let E be the differential ideal of R generated
by p1, . . . , ps and define the product q of the initials and separants of all p1, . . . , ps. Then
E : q∞ is a radical differential ideal. Given p ∈ R, we have p ∈ E : q∞ if and only if the
pseudo-remainder of p modulo p1, . . . , ps and their derivatives is zero.

Similarly to the algebraic case treated in the previous section, the Nullstellensatz for
analytic functions (due to J. F. Ritt and H. W. Raudenbush, cf. [Rit50, Sects. II.7–11, IX.27])
establishes a one-to-one correspondence of solution sets V := SolΩ(S) of systems of partial
differential equations S = { p1 = 0, . . . , ps = 0 } for m unknown functions, defined over R, and
their vanishing ideals in R = K{u1, . . . , um}

IR(V ) := { p ∈ R | p(f) = 0 for all f ∈ V }.

These are the radical differential ideals of R. The Nullstellensatz implies that, with the
notation of Proposition 3.29, we have IR(SolΩ(S)) = E : q∞.

The following proposition allows to decide whether a given differential equation p = 0 is
a consequence of a (not necessarily simple) differential system S by applying pseudo-division
to p modulo each of the simple systems in a Thomas decomposition of S. It follows from the
Nullstellensatz and it also applies to algebraic systems by ignoring the separants.

Proposition 3.30 ([Rob14], Prop. 2.2.72). Let a (not necessarily simple) differential system
S be given by p1 = 0, p2 = 0, . . . , ps = 0, q1 6= 0, q2 6= 0, . . . , qt 6= 0, and let S1, . . . , Sr
be a Thomas decomposition of S with respect to any ranking on R. Moreover, let E be the
differential ideal of R generated by p1, . . . , ps and define the product q of q1, . . . , qt. For
i ∈ {1, . . . , r}, let E(i) be the differential ideal of R generated by the equations in Si and define
the product q(i) of the initials and separants of all these equations. Then we have√

E : q∞ =
(
E(1) : (q(1))∞

)
∩ . . . ∩

(
E(r) : (q(r))∞

)
.
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An important class of rankings can be defined as follows. This definition can be traced
back to C. Riquier, cf. [Riq10, no. 102].

Remark 3.31. Let the map ϕ : Mon(∆)u→ Q(n+m)×1 = Qn×1 ⊕Qm×1 be defined by

∂Iuj 7−→ (I, ej)
>, I ∈ (Z≥0)n, 1 ≤ j ≤ m,

where e1, . . . , em are the standard basis vectors of Qm×1. Then every matrix M ∈ Qr×(n+m)

defines an irreflexive and transitive relation > on Mon(∆)u by

v > w :⇐⇒ M ϕ(v) > M ϕ(w), v, w ∈ Mon(∆)u, (3.6)

where vectors on the right hand side are compared lexicographically. Assume thatM admits a
left inverse (in particular, we have r ≥ n+m). Then the linear mapQ(n+m)×1 → Qr×1 induced
by M is injective, and > is a total ordering on Mon(∆)u. Linearity of matrix multiplication
implies that > satisfies condition b) of Definition 3.17, p. 24, of a ranking. Moreover, condition
a) of the same definition holds if and only if, for each j = 1, . . . , n, the first non-zero entry of
the j-th column of M is positive. Every ranking > defined by (3.6) is a Riquier ranking, i.e.,

θ1 ui > θ2 ui ⇐⇒ θ1 uj > θ2 uj

holds for all θ1, θ2 ∈ Mon(∆), 1 ≤ i, j ≤ m.

In every equation p = 0 of a simple differential system S we can solve for the term
containing the highest power of the leader ld(p) to obtain an equivalent equation

init(p) ld(p)k = r ,

where r consists of terms which are lower powers of ld(p) than the one on the left hand side
or lower ranked than ld(p). Moreover, the differential polynomial init(p) does not vanish for
any solution of the simple system S. We obtain a generalization of the Cauchy-Kovalevskaya
Theorem (cf. Thm. 1.1 in the Introduction); cf. also [Tho28], [Tho34], [Ger09], [RRW99].

Corollary 3.32. Let S be a simple differential system as in (3.4). Suppose that (z0
1 , . . . , z

0
n) is

a point where all p1, . . . , ps and all q1, . . . , qt are defined and such that no initial or separant
of any of these differential polynomials vanishes. Let formal power series around (z0

1 , . . . , z
0
n)

be defined by

fk :=
∑

J∈(Z≥0)n

ck,J
(z1 − z0

1)J1

J1!
. . .

(zn − z0
n)Jn

Jn!
, k = 1, . . . ,m ,

with Taylor coefficients ck,J . Then any assignment of values to ck,J for all J ∈ (Z≥0)n such
that ∂Juk is not a principal derivative and

qj(f1, . . . , fm)|(z1,...,zn)=(z01 ,...,z
0
n) 6= 0 , j = 1, . . . , t ,

gives rise to formal power series solutions

u1(z1, . . . , zn) = f1 , . . . , um(z1, . . . , zn) = fm ,

of S around (z0
1 , . . . , z

0
n) determined by the consistent system of algebraic equations for ck,J

(∂Jpi)(f1, . . . , fm)|(z1,...,zn)=(z01 ,...,z
0
n) = 0 , J ∈ (Z≥0)n , i = 1, . . . , s ,

and conversely, every formal power series solution of S around (z0
1 , . . . , z

0
n) stems from such an

assignment. If > is a Riquier ranking, then (sufficiently generic) initial conditions determined
by convergent power series yield convergent power series solutions.
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3.3 Elimination

Thomas’ algorithm can be used to solve various differential elimination problems. This section
presents results on certain rankings on the differential polynomial ring R = K{u1, . . . , um}
which allow to compute all differential consequences of a given differential system involving
only a specified subset of the differential indeterminates u1, . . . , um. In other words, this tech-
nique allows to determine all differential equations which are satisfied by certain components
of the solution tuples. We adopt the notation from the previous section.

Definition 3.33. Let I1, I2, . . . , Ik form a partition of {1, 2, . . . ,m} such that i1 ∈ Ij1 ,
i2 ∈ Ij2 , i1 ≤ i2 implies j1 ≤ j2. Let Bj := {ui | i ∈ Ij}, j = 1, . . . , k. Moreover, fix
some degree-reverse lexicographical ordering > on Mon(∆). Then the block ranking on R with
blocks B1, . . . , Bk (with u1 > u2 > . . . > um) is defined for θ1 ui1 , θ2 ui2 ∈ Mon(∆)u, where
ui1 ∈ Bj1 , ui2 ∈ Bj2 , by

θ1 ui1 > θ2 ui2 :⇐⇒


j1 < j2 or

(
j1 = j2 and

(
θ1 > θ2 or

( θ1 = θ2 and i1 < i2 )
) )

.

Such a ranking is said to satisfy B1 � B2 � . . .� Bk.

Example 3.34. With respect to the block ranking onK{u1, u2, u3} with blocks {u1}, {u2, u3}
(and u1 > u2 > u3) we have (u1)(0,1) > u1 > (u2)(1,2) > (u3)(1,2) > (u2)(0,1).

In the situation of the previous definition, for every i ∈ {1, . . . , k}, we consider

K{Bi, . . . , Bk} := K{u | u ∈ Bi ∪ . . . ∪Bk}

as a differential subring of R, endowed with the restrictions of the derivations ∂1, . . . , ∂n to
K{Bi, . . . , Bk}.

For any algebraic or differential system S we denote by S= (resp. S 6=) the set of the left
hand sides of all equations (resp. inequations) in S.

Proposition 3.35 ([Rob14], Prop. 3.1.36). Let S be a simple differential system, defined over
R, with respect to a block ranking with blocks B1, . . . , Bk. Moreover, let E be the differential
ideal of R generated by S= and q the product of the initials and separants of all elements of
S=. For every i ∈ {1, . . . , k}, let Ei be the differential ideal of K{Bi, . . . , Bk} generated by
Pi := S=∩K{Bi, . . . , Bk} and let qi be the product of the initials and separants of all elements
of Pi. Then, for every i ∈ {1, . . . , k}, we have

(E : q∞) ∩K{Bi, . . . , Bk} = Ei : q∞i .

In other words, the differential equations implied by S which involve only the differential
indeterminates in Bi ∪ . . . ∪ Bk are precisely those whose pseudo-remainders modulo the
elements of S= ∩K{Bi, . . . , Bk} and their derivatives are zero.

Corollary 3.36 ([Rob14], Cor. 3.1.37). Let S be a (not necessarily simple) differential system,
defined over R, and S1, . . . , Sr a Thomas decomposition of S with respect to a block ranking
with blocks B1, . . . , Bk. Moreover, let E be the differential ideal of R generated by S= and
q the product of all elements of S 6=. Let i ∈ {1, . . . , k} be fixed. For every j ∈ {1, . . . , r}, let
E(j) be the differential ideal of K{Bi, . . . , Bk} generated by Pj := S=

j ∩K{Bi, . . . , Bk} and let
q(j) be the product of the initials and separants of all elements of Pj. Then we have√

E : q∞ ∩ K{Bi, . . . , Bk} = (E1 : q∞1 ) ∩ . . . ∩ (Er : q∞r ) .
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