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Abstract
In this extended abstract, we present the tools in order to construct an

algorithm for computing the Hermite normal form of pseudo-matrices over
Prüfer domains. This algorithm allows us to provide constructive proofs
of the main theoretical results on finitely presented modules over Prüfer
domains and to discuss the resolution of linear systems. We generalize the
methodology developed by Henri Cohen for Dedekind domains in [Cohen,
Chapter 1]. Finally, we present some results for Prüfer domains of dimen-
sion one. A full paper is found on http://arxiv.org/abs/1508.00345.

Introduction
The algorithmic solution of linear systems over fields or over PIDs is classical
and it is equivalent to transforming the system via elementary manipulations
(and Bezout manipulations for PIDs), in order to obtain a convenient reduced
form (Hermite normal form or Smith normal form).

We use here a generalization of this kind of process for arbitrary Prüfer
domains.

We adapt for an arbitrary Prüfer domain the generalized matrix computa-
tions given by Henri Cohen [Cohen, Chapter 1] for the algorithmics in rings of
number fields (number rings).

We obtain a system of generalized matrix computations and as consequences
the main “abstract” theorems for Prüfer domains. The generalization consists
in replacing when necessary matrices over usual bases by matrices over decom-
positions of the modules as direct sums of rank one projective modules. These
new matrices are called pseudo-matrices.

From a Computer Algebra viewpoint, computing with pseudo-matrices al-
lows us to treat some examples inaccessible for usual methods: since our true
computational tool is the inversion of finitely generated ideals, it is possible to
work with number rings whose discriminant has no known complete factoriza-
tion.

For Dedekind domains, and more generally for dimension one Prüfer do-
mains, we obtain more precise results, similar to Smith reduction of usual ma-
trices in PIDs.

General references for the constructive theory of Prüfer domains are found
in [ACMC, CACM, Modules]. Many useful constructive proofs are also found
in [MRR].
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1 Basic facts

1.1 Definitions

A ring A is zero-dimensional when

∀a ∈ A, ∃n ∈ N ∃x ∈ A, xn(1− ax) = 0.

An integral domain A is of (Krull) dimension 6 1 if for all b 6= 0 in A,
the quotient ring A/〈b〉 est zero-dimensional. E.g. number rings have dimension
1 because their quotients are finite, and consequently zero-dimensional.

Over an arbitrary ring A a finitely generated ideal a = 〈a1, . . . , an〉 is lo-
cally principal if there exists s1, . . . , sn ∈ A such that

∑
i∈J1..nK si = 1 and

sia ⊆ 〈ai〉 for each si.
A ring A is arithmetic if all finitely generated ideals are locally principal.
A finitely generated ideal a = 〈a1, . . . , an〉 is invertible if there exists a

regular element c and an finitely generated ideal b such that ab = 〈c〉. Il other
words, a is locally principal an contains a regular element.

A Prüfer domain is an integral arithmetic ring. In other words, it is an
integral domain whose all nonzero finitely generated ideal are invertible.

The determinantal ideal of order k of a matrix M is the ideal Dk(M)
generated by the minors of order k of M .

The Fitting ideal of order k of a finitely presented module P , coker of a
matrix M ∈Mn,m(A) is defined by Fk(P ) := Dn−k(M).

1.2 Computations with finitely generated ideals in a Prüfer
domain

We work with an explicit Prüfer domain Z. This means that for an arbitrary
finitely generated ideal a = 〈a1, . . . , an〉 we have an algorithm that computes
s1, . . . , sn ∈ Z such that

∑
i si = 1 and sia ⊆ 〈ai〉 for each si. E.g. number

rings are explicit Prüfer domains. We assume also that Z has a divisbility test,
giving an x s.t. ax = b when the test gives the answer “Yes” to the question
“does a divise b?”.

From these basic algorithms the following computations are shown to be
easy. Note that by “computing an ideal”, we mean to compute a generator set
and a list (s1, . . . , sn) as in the previous explanation.

• For a finitely generated, compute an ideal b s.t. ab is principal.

• For a and b finitely generated, compute s, t s.t. s + t = 1, sa ⊆ b and
tb ⊆ a.

• For a and b finitely generated, compute a + b, ab, a ∩ b and (a : b).

• For a and b finitely generated, test if a ⊆ b.

The following computations are more tricky. We assume that Z is moreover
explicitly of dimension 1.



• For a finitely generated and a nonzero in a, compute b ∈ a s.t. a = 〈a, b〉.

• For a and b finitely generated, compute an isomorphism between the mod-
ules a⊕ b and Z⊕ ab.

2 Pseudo-bases and pseudo-matrices
We note K the quotient field of Z and Gfr(Z) the (multiplicative) group of
fractional ideals of K. Such a fractional ideal is a sub-Z-module of K equal
to a

c for a (usual) finitely generated ideal a ⊆ Z and c nonzero in Z. A Z-
module E which is finitely generated and without torsion can be viewed as a
sub-Z-module of the K-vector space E′ = K⊗Z E.

A finitely generated projective Z-module E can always be given as a direct
sum E = E1 ⊕ · · · ⊕ Er with isomorphisms Ei ' ei ∈ Gfr(A): ei 3 x 7→ xei
(where ei ∈ E′). A pseudo-basis of E is by definition an r-tuple(

(e1, e1), . . . , (er, er)
)

s.t. E = e1e1 ⊕ · · · ⊕ erer,

Note that (e1, . . . , er) is a basis of the vector space E′.
Let ϕ : E → H a linear map between projective modules with pseudo-bases

E =
(
(e1, e1), . . . , (em, em)

)
and H =

(
(h1, h1), . . . , (hn, hn)

)
.

Extending the scalars to K we get a linear map ϕ′ : E′ → H ′ with a matrix A
over the K-bases (e1, . . . , em) and (h1, . . . , hn).

• We call matrix of ϕ over pseudo-bases E and H the data

A = (h1, . . . , hn; e1, . . . , em;A) = (h; e;A), where A = (aij)ij ∈Mn,m(K).

We have the inclusions aijej ⊆ hi. We note A = ME,H(ϕ) .

intuitive visualization: A =


e1 e2 e3 e4

h1 a11 a12 a13 a14
h2 a21 a22 a23 a24
h3 a31 a32 a33 a34

 aijej ⊆ hi.

• We call pseudo-matrix any data (h; e;A) of this kind, i.e. with inclusions
aijej ⊆ hi. It can be viewed as the matrix of a Z-linear map between sub-
Z-modules of Kn and Km.

• For fixed lists e et h, the corresponding pseudo-matrices define a Z-module
Mh;e(A) (isomorphic to the Z-module of Z-linear maps from E to H).
The product of pseudo-matrices of convenient formats is defined in the
natural way and corresponds to the composition of linear maps.



• For a square pseudo-matrix A = (h; e;A) we define its determinant
(ideal) as being

Z ⊇ det(A) := det(A) e h−1 , where e =
∏

j
ej and h =

∏
i
hi.

A square pseudo-matrix A is invertible if and only if det(A) = Z. For
square pseudo-matricesA andB with convenient formats we have det(AB) =
det(A) det(B).

• Let β = [β1, . . . , βr] ⊆ J1..nK et α = [α1, . . . , αr] ⊆ J1..mK subsequences in
increasing order. We note Aβ,α the pseudo-matrix extracted on the rows
β and columns α.

Aβ,α = (hβ1 , . . . , hβr ; eα1 , . . . , eαr , Aβ,α).

The ideal

mβ,α(A) := det(Aβ,α) = det(Aβ,α)(
∏r

i=0
eαi

)(
∏r

j=0
hβj

)−1

is called the minor (ideal) of order r of A extracted on rows β
and columns α.

• For an arbitrary pseudo-matrix and r 6 inf(m,n) the determinantal
ideal of order r of A, noted Dr(A), is the sum of minors of order r of
A.
The pseudo-matrix A represents a surjective linear map if and only if
Dn(A) = Z.

• Let s ∈ Z∗ s.t. the modules E[1/s] and H[1/s] are free over Z[1/s].
Let ϕs : E[1/s]→ H[1/s] the extension of ϕ by Z→ Z[1/s].
Then for each r we get Dr(ϕ)Z[1/s] = Dr(ϕs) (usual determinantal ide-
als).

• Let (s1, . . . , sn) be comaximal in Z. A linear system AX = B (with
pseudo-matrices A,B,X) admits a solution in Z if and only if it admits a
solution in each Z[1/si].

3 Computations with pseudo-matrices
Let a and b be two finitely generated ideals of Z and M be a module with
pseudo-basis E =

(
(e1, a), (e2, b)

)
. If s + t = 1, sa ⊆ b and tb ⊆ a, another

pseudo-basis of M is H =
(
(f1, a + b), (f2, a ∩ b)

)
where f1 = te1 + se2 et

f2 = −e1 + e2. We get the following “Bezout pseudo-matrix ” of change of
pseudo-bases from E to H.

B = MH,E(IdM ) =
[ a + b a ∩ b

a t −1
b s 1

]
,

with inverse

ME,H(IdM ) =
[ a b

a + b 1 1
a ∩ b −s t

]
.



The Bezout pseudo-matrices and the analogues of Gauss pivoting matrices
allow us to compute the reduction of pseudo-matrices to convenient “normal
forms”, analogous to HNF (Hermite normal form) for Prüfer domains and to
SNF (Smith normal form) for Prüfer domains of dimension 1.

For dealing with pseudo-matrices over Prüfer domains of dimension 1 we
use an algorithm in some zero-dimensional quotient rings: a zero-dimensional
arithmetic ring is a principal ideal ring and a matrix over it can be reduced to
a Smith normal form by elementary row and column manipulations.

Two kinds of easy consequences of these reductions of pseudo-matrices:

• The general discussion of linear systems over Prüfer domains (coefficients
and unknowns in Z)

• Theoretical results on the structure of finitely presented modules, finitely
generated projective modules and linear maps between these modules: a
finitely generated sub-Z-module of Kn is finitely generated projective, a
finitely generated projective module is a direct sum of rank one projec-
tive submodules, the kernel of a linear map between finitely generated
projective modules is a direct summand, and so on. . .
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