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Motivation : Cryptology

Integer factorization is an important problem in cryptology. There
are two types of algorithms to do so.

1 Algorithms which find all the factors < m with cost depending
on m and polynomially on the integer to factor. Ex. Trial
division, ECM - Elliptic Curve Method .

2 Algorithms whose cost depends on the size of integer to
factor. Ex. QS (Quadratic Sieve), NFS (Number Field
Sieve).

The building block which takes a non-negligible
proportion of time in NFS is ECM.
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Preliminaries - 1

1 K a field, E is a curve defined by y2 = x3 + ax + b where
a, b ∈ K such that 4a3 + 27b2 6= 0. We call E an elliptic curve
over K.

2 We note the set of points on E with coordinates in K by
E(K). With a distinguished point OE, E(K) has a group law
under which it forms an Abelian group.

3 An important quantity associated with an elliptic curve is its
j-invariant which is 1728 4a3

4a3+27b2 .
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ECM algorithm

Algorithm 1 Practical version of ECM (Lenstra + Montgomery)

INPUT : Integers n and B
OUTPUT : a non-trivial factor of n.

1: while No factor is found do
2: E/Q← an elliptic curve and P = (x : y : z) ∈ E(Q).
3: PB ← [B!]P = (xB : yB : zB) mod n
4: g ← gcd(zB, n)
5: if g 6∈ {1, n} then return g
6: end if
7: end while
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Correctness

Idea
Let p be an unknown prime factor of n. If ord(P) in E(Fp) divides
B!, then

[B!](xP : yP : zP) ≡ (0 : 1 : 0) mod p.

In this case p divides gcd(zP, n).

Sufficient condition
#E(Fp) is B−smooth i.e. all its prime factors are < B.

Idea of Montgomery
Question : What if #E(Fp) is even for all primes p ?
Theorem : If m divides torsion order of E(Q) then m divides
#E(Fp) for almost all p.
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Montgomery heuristic

Definition
Let E be an elliptic curve, ` be a prime and n be a sufficiently large
integer. We define empirical average valuation,

v̄`(E) =
∑

p<n(val`(#E(Fp))
#{p < n} .

Heuristic
Curves with larger average valuation are ECM-friendly.
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How to improve average valuation ?

Some ways
1 Montgomery (1985), Suyama (1985), Atkin et Morain (1993),

Bernstein et al (2010) : Torsion points over Q

2 Brier and Clavier (2010) : Torsion points over Q(i)
v2(#E(Fp)) = 1

2 v2(#E(Fp)|p ≡ 1 mod 4) + 1
2 v2(#E(Fp) | p ≡ 3 mod 4)

3 Barbulescu et al (2012) : Better average valuation without
additional torsion points by reducing the size of a ”specific”
Galois group.
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Preliminaries - 2

Definition - Theorem
For an elliptic curve E and a an integer m, we define the
m-division polynomial as

Ψ(E,m)(X ) =
∏

(x :±y :1)∈E(Q̄)[m]

(X − x) ∈ Q[X ].

Example
Let E : y2 = x3 + ax + b then Ψ(E,3) = x4 + 2ax2 + 4bx − 1

3 a2

Division polynomials can be computed recursively thus it is not
necessary to know E(Q̄)[m] and they are used to construct the
torsion fields.
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Preliminaries - 3

Definition (m-torsion field)
Let E be an elliptic curve on Q, m a positive integer. The
m-torsion field Q(E[m]) is the extension of Q by the coordinates of
m-torsion points in Q̄.

As E(Q̄)[m] ' Z/mZ× Z/mZ, G = Gal(Q(E[m])/Q) is always a
subgroup of Aut(Z/mZ× Z/mZ) = GL2(Z/mZ).

Mod m Galois Image (Definition)

ρE,m : Gal(Q(E[m])/Q) ↪→ GL2(Z/mZ).

Weil pairing
Q(ζm) is contained in Q(E[m]) and we have

det(ρE,m(Gal(Q(E[m])/Q))) = (Z/mZ)∗.

9 / 24



Computer algebra Approach
Modular curves approach

Comparing different families

Preliminaries - 3

Definition (m-torsion field)
Let E be an elliptic curve on Q, m a positive integer. The
m-torsion field Q(E[m]) is the extension of Q by the coordinates of
m-torsion points in Q̄.

As E(Q̄)[m] ' Z/mZ× Z/mZ, G = Gal(Q(E[m])/Q) is always a
subgroup of Aut(Z/mZ× Z/mZ) = GL2(Z/mZ).

Mod m Galois Image (Definition)

ρE,m : Gal(Q(E[m])/Q) ↪→ GL2(Z/mZ).

Weil pairing
Q(ζm) is contained in Q(E[m]) and we have

det(ρE,m(Gal(Q(E[m])/Q))) = (Z/mZ)∗.
9 / 24



Computer algebra Approach
Modular curves approach

Comparing different families

Galois images

Theorem (Serre, 1972)
Let E be an elliptic curve without complex multiplication.

(Generic case) For all primes ` outside a finite set depending
on E and for all k ≥ 1, Gal(Q(E[`k ])/Q) = GL2(Z/`kZ).
For all primes ` and k ≥ 1, the sequence

ιk = [GL2(Z/`kZ) : ρE,`k (Gal(Q(E[`k ])/Q))]

is non-decreasing and eventually stationary.

A conjecture of Serre
”La condition ` ≥ 41 suffit-elle à assurer que ρE est surjectif ?”
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How to improve average valuation ?

Theorem (Barbulescu et al. 2012)
Let ` be a prime and E1 and E2 be two elliptic curves. If
∀n ∈ N,Gal(Q(E1[`n])/Q) ' Gal(Q(E2[`n])/Q) then
v̄`(E1) = v̄`(E2).

Thus in order to change the average valuation,
we must change Gal(Q(E[`n])/Q) for at least one n.

Example

Family Torsion v̄2
Primes found
between 215, 222

Suyama Z/6Z 10/3 7529
Suyama - 11 Z/6Z 11/3 9041 (20% more)
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Computer algebra approach : Subfields

Question : Under which conditions on t0 ∈ Q,
Gal(K(t0)/Q) ⊆ H ?

K(t)H

Q(t) = K(t)G

K(t)

Gal(K(t)/Q(t)) = G

Pt(x) ∈ Q(t)[x]

H

Answer : When Pt0(x) has a root in Q.
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For particular subgroups H

Let G = Gal(K(t)/Q(t)) and H ⊆ G.
1 G = H : It suffices to check that for any tower of extensions

between Q(t) and K(t), every defining polynomial remains
irreducible. The complexity is the complexity of multivariate
polynomial factorization of degrees < [K(t) : Q(t)]. This case
becomes easy when [K(t) : Q(t)] is small.

2 [G : H] = 2 :
1 Factorize Disc(K(t)) ∈ Z[t].
2 For each squarefree factor f ∈ Z[t] of Disc(K(t)), check using

specializations if K(t)H is defined by X 2 − f .
This case becomes easy if the factors of Disc(K(t)) are
known.
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Particular case : K = Q(a, b)(E[`]) et G = H
Idea : Formal construction of torsion field and sufficient condition
that its Galois group is generic.
Sufficient condition : When all the following extensions have
generic degrees.

K0 = Q(a, b)

K1 = Q(a, b)(x1)

K2 = Q(a, b)(x1, x2)

K3 = Q(a, b)(x1, x2, y1)

K4 = Q(a, b)(x1, x2, y1, y2) = Q(a, b)(E[`])

P1 = Ψ of degree `2−1
2

P2 = a factor of Ψ of degree `2−`
2

P3 = y2 − (x3
1 + ax1 + b)

P4 = y2 − (x3
2 + ax2 + b)

As E[`] ' Z/`Z× Z/`Z, Q(a, b)(E[`]) is constructed by only 4 extensions.
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Valuation m = 4, Montgomery curve
Theorem

Let E : By2 = x3 + Ax2 + x be a rational elliptic curve with B(A2 − 4) 6= 0. Then the
generic average valuation v̄2(E) is 10/3 ≈ 3.33, except,

If A2 − 4 6= � i.e. E(Q)[2] 6= Z/2Z× Z/2Z, we note Ψ be the quartic factor of
its 4-division polynomial. Then we have,

Fact. Pat. of Ψ Condition(s) Index Valuation
(2, 2) A = −2 t4−4

t4+4 24 10/3 ≈ 3.33
(4) A±2

B = ±� 12 11/3 ≈ 3.67

If A2 − 4 = � i.e. if A = t2+4
2t . Then we have,

Fact. Pat. of Ψ Condition(s) Index Valuation
(1, 1, 2) A = t4+24 t2+16

4 (t2+4)t and B = −t(t2 + 4)� 48 14/3 ≈ 4.67

(1, 1, 2) A = t4+24 t2+16
4 (t2+4)t 24 23/6 ≈ 3.83

(2, 2) A = t2+4
2t and A±2

B = � 24 13/3 ≈ 4.33
(2, 2) A = t2+4

2t 12 11/3 ≈ 3.67
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Theorem (Attributed to Shimura,1973)
If H ⊆ GL2(Z/`nZ) is such that −1 ∈ H and det(H) = (Z/`nZ)∗.
Then ∃ XH(j , t) ∈ Q(j , t) such that the following conditions are
equivalent.

1 Gal(Q(E[`n])/Q) ⊆ H
2 ∃t0 ∈ Q such that XH(j(E), t0) = 0.

Fast computations of XH

[RZB] Jeremy Rouse and David Zureick-Brown, ”Elliptic curves over Q and 2-adic
images of Galois” (2015)

Complete description of possible 2-adic Galois images.
[SZ] Andrew Sutherland and David Zywina, ”Modular curves of prime-power level with
infinitely many rational points” (2017)

Complete description of possible `-adic Galois images contained in subgroups
containing −1.
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Example

Curve j(E) #Gal(Q(E[3])/Q) v̄3
y2 = x3 − 336x + 448 1792 12 39/32

y2 = x3 − 72 · 336x + 73 · 448 1792 6 54/32

The modular curves approach does not work for arbitrary H.

Let H be a subgroup of GL2(Z/`nZ).

−1 6∈ H −1 ∈ H
` = 2 [RZB] [RZB], [SZ]
` 6= 2 [SZ]

Our contribution
List of parametrized elliptic curves having non-generic Galois image
not containing −1 when `n ∈ {3, 32, 33, 5, 52, 7, 13}.
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When −1 6∈ H
Let H̃ be subgroup of GL2(Z/`nZ) containing −1 with full
determinant ; let Et : y2 = x3 + A(t)x + B(t) be such that

Gal(Q(t)(Et [`n])/Q(t)) ⊂ H̃.

Computer Algebra Approach : Let H be subgroup of H̃ such
that [H̃ : H] = 2 and H̃ = 〈H,−1〉.

KH = Q(t)(
√

f )

Q(t)

K = Q(t)(E[`n])

H̃

H
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New results

Some families with exceptional mod `n Galois images for
`n ∈ {3, 9, 27}.

H (Order, index) E : y2 = x3 + a(t)x + b(t)

〈
(

2 1
0 1
)

,
(

1 2
0 1
)
〉 ⊂ GL2(Z/3Z) (6, 8)

a = −3(t + 3)(t − 27)3,
b = −2(t2 + 18t − 27)(t − 27)4

〈
(

1 1
0 1
)

,
(

2 0
0 1
)

,
(

4 0
0 7
)

,(
1 3
0 1
)

,
(

1 0
0 4
)
〉 ⊂ GL2(Z/9Z) (162, 24)

a = −3(t3 + 9t2 + 27t + 3)(t + 3),
b = (−2t6 − 36t5 − 270t4 − 1008t3

−1782t2 − 972t + 54)

〈
(

1 2
0 1
)

,
(

4 10
9 16
)

,
(

19 0
0 1
)

,(
10 0
0 19
)

,
(

10 21
0 19
)

,
(

4 0
0 4
)

,(
8 16

24 7
)

,
(

1 9
0 1
)
〉 ⊂ GL2(Z/27Z) (4374, 72)

a = −3(t9 + 9t6 + 27t3 + 3)(t3 + 3),
b = −2t18 − 36t15 − 270t12 − 1008t9

−1782t6 − 972t3 + 54
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A criteria to compare smoothness properties
Notation : s ∼ t if t −

√
t < s < t +

√
t.

Can we claim the following ? For E an elliptic curve, there exists α(E) ∈ R is such that

#{p ∼ n |#E(Fp) is B-smooth}
#{p | p ∼ n}

=
#{x ∼ neα(E) | x is B-smooth}

#{x | x ∼ neα(E)}
.

Definition

Let E be an elliptic curve and ` a prime. Let α`(E) = ( 1
`−1 − v̄`(E)) log `. We define,

α(E) =
∑
`

α`(E).

In general α is negative and it works experimentally very well.

Theorem

There are only finitely many values of α(E). And the best among them is
approximately -3.43.
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Open questions

Proving theoretically that α works.

There are curves where 2-Galois and 3-Galois are generic
however 6-Galois is not. To what extent can these curves be
used for ECM ?
Generalising the above work over number fields. In the NFS
algorithm for discrete logarithms, one can have to factor many
integers of the form a4 + b4. In this case, we search families
over Q(ζ8).

Thank you !
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α : An efficient tool
1 Curves with torsion Z/2Z× Z/8Z : For these curves v̄2 changes from 14

9 to 16
3 .

Thus,
αZ/2Z×Z/8Z = αgeneric + (14/9− 16/3) log(2) ≈ −3.4355.

2 Suyama-11 family : For these curves, v̄2 changes from 14
9 to 11

3 and v̄3 changes
from 87

128 to 27
16 . Thus,

αSuyama−11 = αgeneric +(14/9−11/3) log(2)+(87/128−27/16) log(3) ≈ −3.3825.

Numerical experiments with α. (n = 225)
1 Curves with torsion Z/2Z× Z/8Z.

n neα #E(Fp) errorn errorneα

B1 = 30 0.000518 0.005753 0.005126 889 % 10.89 %
B2 = 100 0.008892 0.03883 0.042573 378.8 % 9.63 %

2 Suyama-11

n neα #E(Fp) errorn errorneα

B1 = 30 0.000518 0.005133 0.005743 1008 % 11.89 %
B2 = 100 0.008892 0.04013 0.04101 361%, 2.19%
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