Finding ECM friendly curves: A Galois approach

Sudarshan SHINDE

Sorbonne Universités, Paris (UPMC, IMJ-PRG)

25/01/2018

Motivation : Cryptology

Integer factorization is an important problem in cryptology. There are two types of algorithms to do so.
(1) Algorithms which find all the factors $<m$ with cost depending on m and polynomially on the integer to factor. Ex. Trial division, ECM - Elliptic Curve Method .
(2) Algorithms whose cost depends on the size of integer to factor. Ex. QS (Quadratic Sieve), NFS (Number Field Sieve).

Motivation : Cryptology

Integer factorization is an important problem in cryptology. There are two types of algorithms to do so.
(1) Algorithms which find all the factors $<m$ with cost depending on m and polynomially on the integer to factor. Ex. Trial division, ECM - Elliptic Curve Method .
(2) Algorithms whose cost depends on the size of integer to factor. Ex. QS (Quadratic Sieve), NFS (Number Field Sieve). The building block which takes a non-negligible proportion of time in NFS is ECM.

Preliminaries - 1

(1) K a field, E is a curve defined by $y^{2}=x^{3}+a x+b$ where $a, b \in \mathrm{~K}$ such that $4 a^{3}+27 b^{2} \neq 0$. We call E an elliptic curve over K.
(2) We note the set of points on E with coordinates in K by $\mathrm{E}(\mathrm{K})$. With a distinguished point $\mathcal{O}_{\mathrm{E}}, \mathrm{E}(\mathrm{K})$ has a group law under which it forms an Abelian group.
(3) An important quantity associated with an elliptic curve is its j-invariant which is $1728 \frac{4 a^{3}}{4 a^{3}+27 b^{2}}$.

ECM algorithm

Algorithm 1 Practical version of ECM (Lenstra + Montgomery)
INPUT : Integers n and B
OUTPUT : a non-trivial factor of n.
1: while No factor is found do
2: $\quad \mathrm{E} / \mathbb{Q} \leftarrow$ an elliptic curve and $\mathrm{P}=(x: y: z) \in \mathrm{E}(\mathbb{Q})$.
3: $\quad \mathrm{P}_{\mathrm{B}} \leftarrow[\mathrm{B}!] \mathrm{P}=\left(x_{\mathrm{B}}: y_{\mathrm{B}}: z_{\mathrm{B}}\right) \bmod n$
4: $\quad g \leftarrow \operatorname{gcd}\left(z_{\mathrm{B}}, n\right)$
5: \quad if $g \notin\{1, n\}$ then return g
6: end if
7: end while

Correctness

Idea

Let p be an unknown prime factor of n. If $\operatorname{ord}(\mathrm{P})$ in $\mathrm{E}\left(\mathbb{F}_{p}\right)$ divides $B!$, then

$$
[\mathrm{B}!]\left(x_{\mathrm{P}}: y_{\mathrm{P}}: z_{\mathrm{P}}\right) \equiv(0: 1: 0) \bmod p
$$

In this case p divides $\operatorname{gcd}\left(z_{\mathrm{P}}, n\right)$.

Sufficient condition

$\# \mathrm{E}\left(\mathbb{F}_{p}\right)$ is B -smooth i.e. all its prime factors are $<\mathrm{B}$.

Idea of Montgomery
Question: What if $\# \mathrm{E}\left(\mathbb{F}_{p}\right)$ is even for all primes p ?
Theorem : If m divides torsion order of $\mathrm{E}(\mathbb{Q})$ then m divides $\# \mathrm{E}\left(\mathbb{F}_{p}\right)$ for almost all p.

Montgomery heuristic

Definition

Let E be an elliptic curve, ℓ be a prime and n be a sufficiently large integer. We define empirical average valuation,

$$
\bar{v}_{\ell}(\mathrm{E})=\frac{\sum_{p<n}\left(\operatorname{val}_{\ell}\left(\# \mathrm{E}\left(\mathbb{F}_{p}\right)\right)\right.}{\#\{p<n\}} .
$$

Heuristic

Curves with larger average valuation are ECM-friendly.

How to improve average valuation?

Some ways

(1) Montgomery (1985), Suyama (1985), Atkin et Morain (1993), Bernstein et al (2010) : Torsion points over \mathbb{Q}

How to improve average valuation?

Some ways

(1) Montgomery (1985), Suyama (1985), Atkin et Morain (1993), Bernstein et al (2010) : Torsion points over \mathbb{Q}
(2) Brier and Clavier (2010): Torsion points over $\mathbb{Q}(i)$ $\overline{\mathrm{v}}_{2}\left(\# \mathrm{E}\left(\mathbb{F}_{p}\right)\right)=\frac{1}{2} \overline{\mathrm{v}}_{2}\left(\# \mathrm{E}\left(\mathbb{F}_{p}\right) \mid p \equiv 1 \bmod 4\right)+\frac{1}{2} \overline{\mathrm{v}}_{2}\left(\# \mathrm{E}\left(\mathbb{F}_{p}\right) \mid p \equiv 3 \bmod 4\right)$

How to improve average valuation?

Some ways

(1) Montgomery (1985), Suyama (1985), Atkin et Morain (1993), Bernstein et al (2010) : Torsion points over \mathbb{Q}
(2) Brier and Clavier (2010): Torsion points over $\mathbb{Q}(i)$ $\overline{\mathrm{v}}_{2}\left(\# \mathrm{E}\left(\mathbb{F}_{p}\right)\right)=\frac{1}{2} \overline{\mathrm{v}}_{2}\left(\# \mathrm{E}\left(\mathbb{F}_{p}\right) \mid p \equiv 1 \bmod 4\right)+\frac{1}{2} \overline{\mathrm{v}}_{2}\left(\# \mathrm{E}\left(\mathbb{F}_{p}\right) \mid p \equiv 3 \bmod 4\right)$
(3) Barbulescu et al (2012) : Better average valuation without additional torsion points by reducing the size of a "specific" Galois group.

Preliminaries - 2

Definition - Theorem

For an elliptic curve E and a an integer m, we define the m-division polynomial as

$$
\Psi_{(\mathrm{E}, m)}(X)=\prod_{(x: \pm y: 1) \in \mathrm{E}(\overline{\mathbb{Q}})[m]}(X-x) \quad \in \mathbb{Q}[X]
$$

Example

Let $\mathrm{E}: y^{2}=x^{3}+a x+b$ then $\Psi_{(\mathrm{E}, 3)}=x^{4}+2 a x^{2}+4 b x-\frac{1}{3} a^{2}$

Preliminaries - 2

Definition - Theorem

For an elliptic curve E and a an integer m, we define the m-division polynomial as

$$
\Psi_{(\mathrm{E}, m)}(X)=\prod_{(x: \pm y: 1) \in \mathrm{E}(\overline{\mathbb{Q}})[m]}(X-x) \quad \in \mathbb{Q}[X]
$$

Example

Let $\mathrm{E}: y^{2}=x^{3}+a x+b$ then $\Psi_{(\mathrm{E}, 3)}=x^{4}+2 a x^{2}+4 b x-\frac{1}{3} a^{2}$

Division polynomials can be computed recursively thus it is not necessary to know $\mathrm{E}(\overline{\mathbb{Q}})[m]$ and they are used to construct the torsion fields.

Preliminaries - 3

Definition (m-torsion field)

Let E be an elliptic curve on \mathbb{Q}, m a positive integer. The m-torsion field $\mathbb{Q}(E[m])$ is the extension of \mathbb{Q} by the coordinates of m-torsion points in $\overline{\mathbb{Q}}$.

As $\mathrm{E}(\overline{\mathbb{Q}})[m] \simeq \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / m \mathbb{Z}, \mathrm{G}=\operatorname{Gal}(\mathbb{Q}(\mathrm{E}[m]) / \mathbb{Q})$ is always a subgroup of $\operatorname{Aut}(\mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / m \mathbb{Z})=\mathrm{GL}_{2}(\mathbb{Z} / m \mathbb{Z})$.

Preliminaries - 3

Definition (m-torsion field)

Let E be an elliptic curve on \mathbb{Q}, m a positive integer. The m-torsion field $\mathbb{Q}(\mathrm{E}[\underline{m}])$ is the extension of \mathbb{Q} by the coordinates of m-torsion points in $\overline{\mathbb{Q}}$.

As $\mathrm{E}(\overline{\mathbb{Q}})[m] \simeq \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / m \mathbb{Z}, \mathrm{G}=\operatorname{Gal}(\mathbb{Q}(\mathrm{E}[m]) / \mathbb{Q})$ is always a subgroup of $\operatorname{Aut}(\mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / m \mathbb{Z})=\mathrm{GL}_{2}(\mathbb{Z} / m \mathbb{Z})$.

Mod m Galois Image (Definition)

$$
\rho_{\mathrm{E}, m}: \operatorname{Gal}(\mathbb{Q}(\mathrm{E}[m]) / \mathbb{Q}) \hookrightarrow \mathrm{GL}_{2}(\mathbb{Z} / m \mathbb{Z}) .
$$

Weil pairing

$\mathbb{Q}\left(\zeta_{m}\right)$ is contained in $\mathbb{Q}(E[m])$ and we have

$$
\operatorname{det}\left(\rho_{\mathrm{E}, m}(\operatorname{Gal}(\mathbb{Q}(\mathrm{E}[m]) / \mathbb{Q}))\right)=(\mathbb{Z} / m \mathbb{Z})^{*} .
$$

Galois images

Theorem (Serre, 1972)

Let E be an elliptic curve without complex multiplication.

- (Generic case) For all primes ℓ outside a finite set depending on E and for all $k \geq 1, \operatorname{Gal}\left(\mathbb{Q}\left(\mathrm{E}\left[\ell^{k}\right]\right) / \mathbb{Q}\right)=\mathrm{GL}_{2}\left(\mathbb{Z} / \ell^{k} \mathbb{Z}\right)$.
- For all primes ℓ and $k \geq 1$, the sequence

$$
\iota_{k}=\left[\mathrm{GL}_{2}\left(\mathbb{Z} / \ell^{k} \mathbb{Z}\right): \rho_{\mathrm{E}, \ell^{k}}\left(\operatorname{Gal}\left(\mathbb{Q}\left(\mathrm{E}\left[\ell^{k}\right]\right) / \mathbb{Q}\right)\right)\right]
$$

is non-decreasing and eventually stationary.

A conjecture of Serre

"La condition $\ell \geq 41$ suffit-elle à assurer que ρ_{E} est surjectif?"

How to improve average valuation?

Theorem (Barbulescu et al. 2012)

Let ℓ be a prime and E_{1} and E_{2} be two elliptic curves. If $\forall n \in \mathbb{N}, \operatorname{Gal}\left(\mathbb{Q}\left(\mathrm{E}_{1}\left[\ell^{n}\right]\right) / \mathbb{Q}\right) \simeq \operatorname{Gal}\left(\mathbb{Q}\left(\mathrm{E}_{2}\left[\ell^{n}\right]\right) / \mathbb{Q}\right)$ then $\bar{v}_{\ell}\left(\mathrm{E}_{1}\right)=\bar{v}_{\ell}\left(\mathrm{E}_{2}\right)$.

Thus in order to change the average valuation, we must change $\operatorname{Gal}\left(\mathbb{Q}\left(\mathrm{E}\left[\ell^{n}\right]\right) / \mathbb{Q}\right)$ for at least one n.

How to improve average valuation?

Theorem (Barbulescu et al. 2012)

Let ℓ be a prime and E_{1} and E_{2} be two elliptic curves. If $\forall n \in \mathbb{N}, \operatorname{Gal}\left(\mathbb{Q}\left(\mathrm{E}_{1}\left[\ell^{n}\right]\right) / \mathbb{Q}\right) \simeq \operatorname{Gal}\left(\mathbb{Q}\left(\mathrm{E}_{2}\left[\ell^{n}\right]\right) / \mathbb{Q}\right)$ then $\bar{v}_{\ell}\left(\mathrm{E}_{1}\right)=\bar{v}_{\ell}\left(\mathrm{E}_{2}\right)$.

Thus in order to change the average valuation, we must change $\operatorname{Gal}\left(\mathbb{Q}\left(\mathrm{E}\left[\ell^{n}\right]\right) / \mathbb{Q}\right)$ for at least one n.

Example

Family	Torsion	$\overline{v_{2}}$	Primes found between $2^{15}, 2^{22}$
Suyama	$\mathbb{Z} / 6 \mathbb{Z}$	$10 / 3$	7529
Suyama - 11	$\mathbb{Z} / 6 \mathbb{Z}$	$11 / 3$	9041 (20\% more)

Computer algebra Approach

Computer algebra approach : Subfields

Question : Under which conditions on $t_{0} \in \mathbb{Q}$, $\operatorname{Gal}\left(\mathrm{K}\left(t_{0}\right) / \mathbb{Q}\right) \subseteq \mathrm{H}$?

Answer: When $\mathrm{P}_{t_{0}}(x)$ has a root in \mathbb{Q}.

For particular subgroups H

Let $\mathrm{G}=\operatorname{Gal}(\mathrm{K}(t) / \mathbb{Q}(t))$ and $\mathrm{H} \subseteq \mathrm{G}$.
(1) $\mathrm{G}=\mathrm{H}$: It suffices to check that for any tower of extensions between $\mathbb{Q}(t)$ and $\mathrm{K}(t)$, every defining polynomial remains irreducible. The complexity is the complexity of multivariate polynomial factorization of degrees $<[K(t): \mathbb{Q}(t)]$. This case becomes easy when $[K(t): \mathbb{Q}(t)]$ is small.
(2) $[\mathrm{G}: \mathrm{H}]=2$:
(1) Factorize $\operatorname{Disc}(\mathrm{K}(t)) \in \mathbb{Z}[t]$.
(2) For each squarefree factor $f \in \mathbb{Z}[t]$ of $\operatorname{Disc}(\mathrm{K}(t))$, check using specializations if $\mathrm{K}(t)^{\mathrm{H}}$ is defined by $X^{2}-f$.
This case becomes easy if the factors of $\operatorname{Disc}(\mathrm{K}(t))$ are known.

Particular case : $\mathrm{K}=\mathbb{Q}(a, b)(\mathrm{E}[\ell])$ et $G=H$

Idea : Formal construction of torsion field and sufficient condition that its Galois group is generic.
Sufficient condition : When all the following extensions have generic degrees.

$$
\begin{gathered}
\mathrm{K}_{4}=\mathbb{Q}(a, b)\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=\mathbb{Q}(a, b)(\mathrm{E}[\ell]) \\
\mid \mathrm{P}_{4}=y^{2}-\left(x_{2}^{3}+a x_{2}+b\right) \\
\mathrm{K}_{3}=\mathbb{Q}(a, b)\left(x_{1}, x_{2}, y_{1}\right) \\
\mid \mathrm{P}_{3}=y^{2}-\left(x_{1}^{3}+a x_{1}+b\right) \\
\mathrm{K}_{2}=\mathbb{Q}(a, b)\left(x_{1}, x_{2}\right) \\
\mid \mathrm{P}_{2}=\text { a factor of } \psi \text { of degree } \frac{\ell^{2}-\ell}{2} \\
\mathrm{~K}_{1}=\mathbb{Q}(a, b)\left(x_{1}\right) \\
\mid \mathrm{P}_{1}=\psi \text { of degree } \frac{\ell^{2}-1}{2} \\
\mathrm{~K}_{0}=\mathbb{Q}(a, b)
\end{gathered}
$$

As $\mathrm{E}[\ell] \simeq \mathbb{Z} / \ell \mathbb{Z} \times \mathbb{Z} / \ell \mathbb{Z}, \mathbb{Q}(a, b)(\mathrm{E}[\ell])$ is constructed by only 4 extensions.

Valuation $m=4$, Montgomery curve

Theorem

Let $\mathrm{E}: B y^{2}=x^{3}+A x^{2}+x$ be a rational elliptic curve with $B\left(A^{2}-4\right) \neq 0$. Then the generic average valuation $\bar{v}_{2}(\mathrm{E})$ is $10 / 3 \approx 3.33$, except,

- If $A^{2}-4 \neq \square$ i.e. $\mathrm{E}(\mathbb{Q})[2] \neq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$, we note Ψ be the quartic factor of its 4 -division polynomial. Then we have,

Fact. Pat. of Ψ	Condition(s)	Index	Valuation
$(2,2)$	$A=-2 \frac{t^{4}-4}{t^{4}+4}$	24	$10 / 3 \approx 3.33$
(4)	$\frac{A \pm 2}{B}= \pm \square$	12	$11 / 3 \approx 3.67$

- If $A^{2}-4=\square$ i.e. if $A=\frac{t^{2}+4}{2 t}$. Then we have,

Fact. Pat. of Ψ	Condition(s)	Index	Valuation
$(1,1,2)$	$A=\frac{t^{4}+24 t^{2}+16}{4\left(t^{2}+4\right) t}$ and $B=-t\left(t^{2}+4\right) \square$	48	$14 / 3 \approx 4.67$
$(1,1,2)$	$A=\frac{t^{4}+24 t^{2}+16}{4\left(t^{2}+4\right) t}$	24	$23 / 6 \approx 3.83$
$(2,2)$	$A=\frac{t^{2}+4}{2 t}$ and $\frac{A \pm 2}{B}=\square$	24	$13 / 3 \approx 4.33$
$(2,2)$	$A=\frac{t^{2}+4}{2 t}$	12	$11 / 3 \approx 3.67$

Modular curves approach

Modular curves approach

Theorem (Attributed to Shimura, 1973)

If $\mathrm{H} \subseteq \mathrm{GL}_{2}\left(\mathbb{Z} / \ell^{n} \mathbb{Z}\right)$ is such that $-1 \in \mathrm{H}$ and $\operatorname{det}(\mathrm{H})=\left(\mathbb{Z} / \ell^{n} \mathbb{Z}\right)^{*}$. Then $\exists X_{\mathrm{H}}(j, t) \in \mathbb{Q}(j, t)$ such that the following conditions are equivalent.
(1) $\operatorname{Gal}\left(\mathbb{Q}\left(\mathrm{E}\left[\ell^{n}\right]\right) / \mathbb{Q}\right) \subseteq \mathrm{H}$
(2) $\exists t_{0} \in \mathbb{Q}$ such that $X_{\mathrm{H}}\left(j(\mathrm{E}), t_{0}\right)=0$.

Modular curves approach

Theorem (Attributed to Shimura, 1973)

If $\mathrm{H} \subseteq \mathrm{GL}_{2}\left(\mathbb{Z} / \ell^{n} \mathbb{Z}\right)$ is such that $-1 \in \mathrm{H}$ and $\operatorname{det}(\mathrm{H})=\left(\mathbb{Z} / \ell^{n} \mathbb{Z}\right)^{*}$. Then $\exists X_{\mathrm{H}}(j, t) \in \mathbb{Q}(j, t)$ such that the following conditions are equivalent.
(1) $\operatorname{Gal}\left(\mathbb{Q}\left(\mathrm{E}\left[\ell^{n}\right]\right) / \mathbb{Q}\right) \subseteq \mathrm{H}$
(2) $\exists t_{0} \in \mathbb{Q}$ such that $X_{\mathrm{H}}\left(j(\mathrm{E}), t_{0}\right)=0$.

Fast computations of X_{H}

[RZB] Jeremy Rouse and David Zureick-Brown, "Elliptic curves over \mathbb{Q} and 2-adic images of Galois" (2015)

- Complete description of possible 2-adic Galois images.
[SZ] Andrew Sutherland and David Zywina, "Modular curves of prime-power level with infinitely many rational points" (2017)
- Complete description of possible ℓ-adic Galois images contained in subgroups containing -1 .

Example

Curve	$j(\mathrm{E})$	$\# \mathrm{Gal}(\mathbb{Q}(\mathrm{E}[3]) / \mathbb{Q})$	\bar{v}_{3}
$y^{2}=x^{3}-336 x+448$	1792	12	$39 / 32$
$y^{2}=x^{3}-7^{2} \cdot 336 x+7^{3} \cdot 448$	1792	6	$54 / 32$

The modular curves approach does not work for arbitrary H .

Example

Curve	$j(\mathrm{E})$	$\# \mathrm{Gal}(\mathbb{Q}(\mathrm{E}[3]) / \mathbb{Q})$	\bar{v}_{3}
$y^{2}=x^{3}-336 x+448$	1792	12	$39 / 32$
$y^{2}=x^{3}-7^{2} \cdot 336 x+7^{3} \cdot 448$	1792	6	$54 / 32$

The modular curves approach does not work for arbitrary H .
Let H be a subgroup of $\mathrm{GL}_{2}\left(\mathbb{Z} / \ell^{n} \mathbb{Z}\right)$.

\[

\]

Our contribution

List of parametrized elliptic curves having non-generic Galois image not containing -1 when $\ell^{n} \in\left\{3,3^{2}, 3^{3}, 5,5^{2}, 7,13\right\}$.

When $-1 \notin \mathrm{H}$

Let $\widetilde{\mathrm{H}}$ be subgroup of $\mathrm{GL}_{2}\left(\mathbb{Z} / \ell^{n} \mathbb{Z}\right)$ containing -1 with full determinant; let $\mathrm{E}_{t}: y^{2}=x^{3}+A(t) x+B(t)$ be such that

$$
\operatorname{Gal}\left(\mathbb{Q}(t)\left(\mathrm{E}_{t}\left[\ell^{n}\right]\right) / \mathbb{Q}(t)\right) \subset \tilde{H} .
$$

Computer Algebra Approach : Let H be subgroup of $\widetilde{\mathrm{H}}$ such that $[\widetilde{H}: H]=2$ and $\widetilde{\mathrm{H}}=\langle\mathrm{H},-1\rangle$.

New results

Some families with exceptional mod ℓ^{n} Galois images for $\ell^{n} \in\{3,9,27\}$.

H	(Order, index)	$\mathrm{E}: y^{2}=x^{3}+a(t) x+b(t)$
$\left\langle\left(\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)\right\rangle \subset \mathrm{GL}_{2}(\mathbb{Z} / 3 \mathbb{Z})$	$(6,8)$	$\begin{gathered} a=-3(t+3)(t-27)^{3} \\ b=-2\left(t^{2}+18 t-27\right)(t-27)^{4} \end{gathered}$
$\begin{gathered} \left\langle\left(\begin{array}{ll} 1 & 1 \\ 0 & 1 \end{array}\right),\left(\begin{array}{ll} 2 & 0 \\ 0 & 1 \end{array}\right),\left(\begin{array}{ll} 4 & 0 \\ 0 & 7 \end{array}\right),\right. \\ \left.\left(\begin{array}{ll} 1 & 3 \\ 0 & 1 \end{array}\right),\left(\begin{array}{ll} 1 & 0 \\ 0 & 4 \end{array}\right)\right\rangle \subset \operatorname{GL}_{2}(\mathbb{Z} / 9 \mathbb{Z}) \end{gathered}$	$(162,24)$	$\begin{aligned} a= & -3\left(t^{3}+9 t^{2}+27 t+3\right)(t+3), \\ b= & \left(-2 t^{6}-36 t^{5}-270 t^{4}-1008 t^{3}\right. \\ & \left.-1782 t^{2}-972 t+54\right) \end{aligned}$
$\begin{gathered} \left\langle\left(\begin{array}{ll} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{cc} 4 & 10 \\ 9 & 16 \end{array}\right),\left(\begin{array}{ll} 19 & 0 \\ 0 & 1 \end{array}\right),\right. \\ \left(\begin{array}{ll} 10 & 0 \\ 0 & 19 \end{array}\right),\left(\begin{array}{cc} 10 & 21 \\ 0 & 19 \end{array}\right),\left(\begin{array}{ll} 4 & 0 \\ 0 & 4 \end{array}\right), \\ \left.\left(\begin{array}{cc} 8 & 16 \\ 24 & 7 \end{array}\right),\left(\begin{array}{ll} 1 & 9 \\ 0 & 1 \end{array}\right)\right\rangle \subset \mathrm{GL}_{2}(\mathbb{Z} / 27 \mathbb{Z}) \end{gathered}$	$(4374,72)$	$\begin{aligned} a= & -3\left(t^{9}+9 t^{6}+27 t^{3}+3\right)\left(t^{3}+3\right) \\ b= & -2 t^{18}-36 t^{15}-270 t^{12}-1008 t^{9} \\ & -1782 t^{6}-972 t^{3}+54 \end{aligned}$

Comparing different families

A criteria to compare smoothness properties

Notation : $s \sim t$ if $t-\sqrt{t}<s<t+\sqrt{t}$.
Can we claim the following ? For E an elliptic curve, there exists $\alpha(\mathrm{E}) \in \mathbb{R}$ is such that

$$
\frac{\#\left\{p \sim n \mid \# \mathrm{E}\left(\mathbb{F}_{p}\right) \text { is B-smooth }\right\}}{\#\{p \mid p \sim n\}}=\frac{\#\left\{x \sim n e^{\alpha(\mathrm{E})} \mid x \text { is B-smooth }\right\}}{\#\left\{x \mid x \sim n e^{\alpha(\mathrm{E})}\right\}}
$$

Definition

Let E be an elliptic curve and ℓ a prime. Let $\alpha_{\ell}(\mathrm{E})=\left(\frac{1}{\ell-1}-\bar{v}_{\ell}(\mathrm{E})\right) \log \ell$. We define,

$$
\alpha(\mathrm{E})=\sum_{\ell} \alpha_{\ell}(\mathrm{E}) .
$$

In general α is negative and it works experimentally very well.

Theorem

There are only finitely many values of $\alpha(\mathrm{E})$. And the best among them is approximately -3.43 .

Open questions

- Proving theoretically that α works.

Open questions

- Proving theoretically that α works.
- There are curves where 2-Galois and 3-Galois are generic however 6 -Galois is not. To what extent can these curves be used for ECM ?

Open questions

- Proving theoretically that α works.
- There are curves where 2-Galois and 3-Galois are generic however 6-Galois is not. To what extent can these curves be used for ECM ?
- Generalising the above work over number fields. In the NFS algorithm for discrete logarithms, one can have to factor many integers of the form $a^{4}+b^{4}$. In this case, we search families over $\mathbb{Q}\left(\zeta_{8}\right)$.

Open questions

- Proving theoretically that α works.
- There are curves where 2-Galois and 3-Galois are generic however 6 -Galois is not. To what extent can these curves be used for ECM ?
- Generalising the above work over number fields. In the NFS algorithm for discrete logarithms, one can have to factor many integers of the form $a^{4}+b^{4}$. In this case, we search families over $\mathbb{Q}\left(\zeta_{8}\right)$.

Thank you!

α : An efficient tool

(1) Curves with torsion $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 8 \mathbb{Z}$: For these curves \bar{v}_{2} changes from $\frac{14}{9}$ to $\frac{16}{3}$. Thus,

$$
\alpha_{\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 8 \mathbb{Z}}=\alpha_{\text {generic }}+(14 / 9-16 / 3) \log (2) \approx-3.4355 .
$$

(2) Suyama-11 family: For these curves, \bar{v}_{2} changes from $\frac{14}{9}$ to $\frac{11}{3}$ and $\overline{v_{3}}$ changes from $\frac{87}{128}$ to $\frac{27}{16}$. Thus,
$\alpha_{\text {Suyama-11 }}=\alpha_{\text {generic }}+(14 / 9-11 / 3) \log (2)+(87 / 128-27 / 16) \log (3) \approx-3.3825$.
Numerical experiments with α. $\left(n=2^{25}\right)$
(1) Curves with torsion $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 8 \mathbb{Z}$.

	n	$n e^{\alpha}$	$\# \mathrm{E}\left(\mathbb{F}_{p}\right)$	error $_{n}$	error $_{n e^{\alpha}}$
$\mathrm{B}_{1}=30$	0.000518	0.005753	0.005126	889%	10.89%
$\mathrm{~B}_{2}=100$	0.008892	0.03883	0.042573	378.8%	9.63%

(2) Suyama-11

	n	$n e^{\alpha}$	\#E(F) Frror $_{p}$)	error $_{n e^{\alpha}}$	
$\mathrm{B}_{1}=30$	0.000518	0.005133	0.005743	1008%	11.89%
$\mathrm{~B}_{2}=100$	0.008892	0.04013	0.04101	361%,	2.19%

