Finding ECM friendly curves: A Galois approach

Sudarshan SHINDE

Sorbonne Universités, Paris (UPMC, IMJ-PRG)

25/01/2018

Motivation : Cryptology

Integer factorization is an important problem in cryptology. There are two types of algorithms to do so.

- Algorithms which find all the factors < m with cost depending on m and polynomially on the integer to factor. Ex. Trial division, ECM - Elliptic Curve Method .
- Algorithms whose cost depends on the size of integer to factor. Ex. QS (Quadratic Sieve), NFS (Number Field Sieve).

Motivation : Cryptology

Integer factorization is an important problem in cryptology. There are two types of algorithms to do so.

- Algorithms which find all the factors < m with cost depending on m and polynomially on the integer to factor. Ex. Trial division, ECM - Elliptic Curve Method .
- Algorithms whose cost depends on the size of integer to factor. Ex. QS (Quadratic Sieve), NFS (Number Field Sieve). The building block which takes a non-negligible proportion of time in NFS is ECM.

Preliminaries - 1

- K a field, E is a curve defined by y² = x³ + ax + b where a, b ∈ K such that 4a³ + 27b² ≠ 0. We call E an elliptic curve over K.
- ⁽²⁾ We note the set of points on E with coordinates in K by E(K). With a distinguished point \mathcal{O}_E , E(K) has a group law under which it forms an Abelian group.
- An important quantity associated with an elliptic curve is its *j*-invariant which is $1728 \frac{4a^3}{4a^3+27b^2}$.

ECM algorithm

Algorithm 1 Practical version of ECM (Lenstra + Montgomery)

INPUT : Integers n and B **OUTPUT** : a non-trivial factor of n.

1: while No factor is found do

2:
$$E/\mathbb{Q} \leftarrow \text{an elliptic curve and } P = (x : y : z) \in E(\mathbb{Q}).$$

3:
$$P_{B} \leftarrow [B!]P = (x_{B} : y_{B} : z_{B}) \mod n$$

4:
$$g \leftarrow \gcd(z_{\mathrm{B}}, n)$$

5: **if**
$$g \notin \{1, n\}$$
 then return g

- 6: end if
- 7: end while

Correctness

Idea

Let p be an unknown prime factor of n. If ord(P) in $E(\mathbb{F}_p)$ divides B!, then

$$[B!](x_{\rm P}:y_{\rm P}:z_{\rm P}) \equiv (0:1:0) \bmod p.$$

In this case p divides $gcd(z_P, n)$.

Sufficient condition

 $\#E(\mathbb{F}_p)$ is B-smooth i.e. all its prime factors are < B.

Idea of Montgomery

Question : What if $\#E(\mathbb{F}_p)$ is even for all primes p? Theorem : If *m* divides torsion order of $E(\mathbb{Q})$ then *m* divides $\#E(\mathbb{F}_p)$ for almost all *p*.

Montgomery heuristic

Definition

Let E be an elliptic curve, ℓ be a prime and n be a sufficiently large integer. We define empirical average valuation,

$$\bar{v}_{\ell}(\mathbf{E}) = \frac{\sum_{p < n} (\operatorname{val}_{\ell}(\#\mathbf{E}(\mathbb{F}_p)))}{\#\{p < n\}}$$

Heuristic

Curves with larger average valuation are ECM-friendly.

How to improve average valuation?

Some ways

 Montgomery (1985), Suyama (1985), Atkin et Morain (1993), Bernstein et al (2010) : Torsion points over Q

How to improve average valuation?

Some ways

- Montgomery (1985), Suyama (1985), Atkin et Morain (1993), Bernstein et al (2010) : Torsion points over Q
- **2** Brier and Clavier (2010) : Torsion points over $\mathbb{Q}(i)$ $\overline{v}_2(\#E(\mathbb{F}_p)) = \frac{1}{2}\overline{v}_2(\#E(\mathbb{F}_p)|p \equiv 1 \mod 4) + \frac{1}{2}\overline{v}_2(\#E(\mathbb{F}_p)|p \equiv 3 \mod 4)$

How to improve average valuation?

Some ways

- Montgomery (1985), Suyama (1985), Atkin et Morain (1993), Bernstein et al (2010) : Torsion points over Q
- **2** Brier and Clavier (2010) : Torsion points over $\mathbb{Q}(i)$ $\overline{v}_2(\#E(\mathbb{F}_p)) = \frac{1}{2}\overline{v}_2(\#E(\mathbb{F}_p)|p \equiv 1 \mod 4) + \frac{1}{2}\overline{v}_2(\#E(\mathbb{F}_p)|p \equiv 3 \mod 4)$
- Barbulescu et al (2012) : Better average valuation without additional torsion points by reducing the size of a "specific" Galois group.

Preliminaries - 2

Definition - Theorem

For an elliptic curve E and a an integer m, we define the m-division polynomial as

$$\Psi_{(\mathrm{E},m)}(X) = \prod_{(x:\pm y:1)\in\mathrm{E}(\bar{\mathbb{Q}})[m]} (X-x) \qquad \in \mathbb{Q}[X].$$

Example

Let
$$E: y^2 = x^3 + ax + b$$
 then $\Psi_{(E,3)} = x^4 + 2ax^2 + 4bx - \frac{1}{3}a^2$

Preliminaries - 2

Definition - Theorem

For an elliptic curve E and a an integer m, we define the m-division polynomial as

$$\Psi_{(\mathrm{E},m)}(X) = \prod_{(x:\pm y:1)\in \mathrm{E}(\bar{\mathbb{Q}})[m]} (X-x) \qquad \in \mathbb{Q}[X].$$

Example

Let
$$E: y^2 = x^3 + ax + b$$
 then $\Psi_{(E,3)} = x^4 + 2ax^2 + 4bx - \frac{1}{3}a^2$

Division polynomials can be computed recursively thus it is not necessary to know $E(\overline{\mathbb{Q}})[m]$ and they are used to construct the torsion fields.

Preliminaries - 3

Definition (*m*-torsion field)

Let E be an elliptic curve on \mathbb{Q} , *m* a positive integer. The *m*-torsion field $\mathbb{Q}(\mathbb{E}[m])$ is the extension of \mathbb{Q} by the coordinates of *m*-torsion points in $\overline{\mathbb{Q}}$.

As $\mathrm{E}(\bar{\mathbb{Q}})[m] \simeq \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$, $\mathrm{G} = \mathrm{Gal}(\mathbb{Q}(\mathrm{E}[m])/\mathbb{Q})$ is always a subgroup of $\mathrm{Aut}(\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}) = \mathrm{GL}_2(\mathbb{Z}/m\mathbb{Z})$.

Preliminaries - 3

Definition (*m*-torsion field)

Let E be an elliptic curve on \mathbb{Q} , *m* a positive integer. The *m*-torsion field $\mathbb{Q}(\mathbb{E}[m])$ is the extension of \mathbb{Q} by the coordinates of *m*-torsion points in $\overline{\mathbb{Q}}$.

As $\mathrm{E}(\bar{\mathbb{Q}})[m] \simeq \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$, $\mathrm{G} = \mathrm{Gal}(\mathbb{Q}(\mathrm{E}[m])/\mathbb{Q})$ is always a subgroup of $\mathrm{Aut}(\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}) = \mathrm{GL}_2(\mathbb{Z}/m\mathbb{Z})$.

Mod *m* Galois Image (Definition)

 $\rho_{\mathrm{E},m} : \mathrm{Gal}(\mathbb{Q}(\mathrm{E}[m])/\mathbb{Q}) \hookrightarrow \mathrm{GL}_2(\mathbb{Z}/m\mathbb{Z}).$

Weil pairing

 $\mathbb{Q}(\zeta_m)$ is contained in $\mathbb{Q}(\mathrm{E}[m])$ and we have

 $\mathsf{det}(\rho_{\mathrm{E},m}(\mathrm{Gal}(\mathbb{Q}(\mathrm{E}[m])/\mathbb{Q}))) = (\mathbb{Z}/m\mathbb{Z})^*.$

Galois images

Theorem (Serre, 1972)

Let ${\rm E}$ be an elliptic curve without complex multiplication.

- (Generic case) For all primes ℓ outside a finite set depending on E and for all k ≥ 1, Gal(Q(E[ℓ^k])/Q) = GL₂(Z/ℓ^kZ).
- For all primes ℓ and $k \ge 1$, the sequence

 $\iota_{k} = [\operatorname{GL}_{2}(\mathbb{Z}/\ell^{k}\mathbb{Z}) : \rho_{\mathrm{E},\ell^{k}}(\operatorname{Gal}(\mathbb{Q}(\mathrm{E}[\ell^{k}])/\mathbb{Q}))]$

is non-decreasing and eventually stationary.

A conjecture of Serre

"La condition $\ell \geq$ 41 *suffit-elle* à assurer que $ho_{
m E}$ est surjectif?"

How to improve average valuation?

Theorem (Barbulescu et al. 2012)

Let ℓ be a prime and E_1 and E_2 be two elliptic curves. If $\forall n \in \mathbb{N}, \operatorname{Gal}(\mathbb{Q}(E_1[\ell^n])/\mathbb{Q}) \simeq \operatorname{Gal}(\mathbb{Q}(E_2[\ell^n])/\mathbb{Q})$ then $\bar{v}_{\ell}(E_1) = \bar{v}_{\ell}(E_2)$.

Thus in order to change the average valuation, we must change $Gal(\mathbb{Q}(E[\ell^n])/\mathbb{Q})$ for at least one *n*.

How to improve average valuation?

Theorem (Barbulescu et al. 2012)

Let ℓ be a prime and E_1 and E_2 be two elliptic curves. If $\forall n \in \mathbb{N}, \operatorname{Gal}(\mathbb{Q}(E_1[\ell^n])/\mathbb{Q}) \simeq \operatorname{Gal}(\mathbb{Q}(E_2[\ell^n])/\mathbb{Q})$ then $\bar{v}_{\ell}(E_1) = \bar{v}_{\ell}(E_2)$.

Thus in order to change the average valuation, we must change $Gal(\mathbb{Q}(E[\ell^n])/\mathbb{Q})$ for at least one *n*.

Example

Family	Torsion	$\bar{v_2}$	Primes found between 2 ¹⁵ , 2 ²²	
Suyama	$\mathbb{Z}/6\mathbb{Z}$	10/3	7529	
Suyama - 11	$\mathbb{Z}/6\mathbb{Z}$	11/3	9041 (20% more)	

Computer algebra Approach

<ロト < 部ト < 目ト < 目ト 目 の Q () 12/24

Computer algebra approach : Subfields

Question : Under which conditions on $t_0 \in \mathbb{Q}$, $\operatorname{Gal}(\mathrm{K}(t_0)/\mathbb{Q}) \subseteq \mathrm{H}$?

Answer : When $P_{t_0}(x)$ has a root in \mathbb{Q} .

For particular subgroups H

Let $G = Gal(K(t)/\mathbb{Q}(t))$ and $H \subseteq G$.

G = H : It suffices to check that for any tower of extensions between Q(t) and K(t), every defining polynomial remains irreducible. The complexity is the complexity of multivariate polynomial factorization of degrees < [K(t) : Q(t)]. This case becomes easy when [K(t) : Q(t)] is small.

- Factorize $Disc(K(t)) \in \mathbb{Z}[t]$.
- Por each squarefree factor f ∈ Z[t] of Disc(K(t)), check using specializations if K(t)^H is defined by X² − f.

This case becomes easy if the factors of Disc(K(t)) are known.

Particular case : $K = \mathbb{Q}(a, b)(E[\ell])$ et G = H

Idea : Formal construction of torsion field and sufficient condition that its Galois group is generic.

Sufficient condition : When all the following extensions have generic degrees.

$$\begin{split} \mathrm{K}_{4} &= \mathbb{Q}(a,b)(x_{1},x_{2},y_{1},y_{2}) = \mathbb{Q}(a,b)(\mathrm{E}[\ell]) \\ & \left| \begin{array}{c} \mathrm{P}_{4} = y^{2} - (x_{2}^{3} + ax_{2} + b) \\ \mathrm{K}_{3} &= \mathbb{Q}(a,b)(x_{1},x_{2},y_{1}) \\ & \left| \begin{array}{c} \mathrm{P}_{3} = y^{2} - (x_{1}^{3} + ax_{1} + b) \\ \mathrm{K}_{2} &= \mathbb{Q}(a,b)(x_{1},x_{2}) \\ & \left| \begin{array}{c} \mathrm{P}_{2} = a \text{ factor of } \Psi \text{ of degree } \frac{\ell^{2} - \ell}{2} \\ \mathrm{K}_{1} &= \mathbb{Q}(a,b)(x_{1}) \\ & \left| \begin{array}{c} \mathrm{P}_{1} = \Psi \text{ of degree } \frac{\ell^{2} - 1}{2} \\ \mathrm{K}_{0} &= \mathbb{Q}(a,b) \end{split} \right. \end{split}$$

As $E[\ell] \simeq \mathbb{Z}/\ell\mathbb{Z} \times \mathbb{Z}/\ell\mathbb{Z}$, $\mathbb{Q}(a, b)(E[\ell])$ is constructed by only 4 extensions.

うへで 15/24

Valuation m = 4, Montgomery curve

Theorem

Let $E: By^2 = x^3 + Ax^2 + x$ be a rational elliptic curve with $B(A^2 - 4) \neq 0$. Then the generic average valuation $\bar{\nu}_2(E)$ is ${}^{10}/_3 \approx 3.33$, except,

• If $A^2 - 4 \neq \Box$ i.e. $E(\mathbb{Q})[2] \neq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, we note Ψ be the quartic factor of its 4-division polynomial. Then we have,

Fact. Pat. of Ψ	Condition(s)	Index	Valuation
(2,2)	$A = -2 \frac{t^4 - 4}{t^4 + 4}$	24	$^{10}/_{3} \approx 3.33$
(4)	$\frac{A\pm 2}{B} = \pm \Box$	12	$^{11}/_{3} \approx 3.67$

• If $A^2 - 4 = \Box$ i.e. if $A = \frac{t^2+4}{2t}$. Then we have,

Fact. Pat. of Ψ	Condition(s)	Index	Valuation
(1,1,2)	$A = rac{t^4 + 24 t^2 + 16}{4 \left(t^2 + 4 ight) t}$ and $B = -t(t^2 + 4) \square$	48	$^{14}/_{3}pprox 4.67$
(1,1,2)	$A = rac{t^4 + 24 t^2 + 16}{4 (t^2 + 4) t}$	24	$^{23}/_{6} \approx 3.83$
(2,2)	$A = \frac{t^2+4}{2t}$ and $\frac{A\pm 2}{B} = \Box$	24	$^{13}/_{3} \approx 4.33$
(2,2)	$A = \frac{t^2 + 4}{2t}$	12	$^{11}/_3 \approx 3.67$

うへで 16 / 24

Modular curves approach

<ロト < 部 > < 言 > < 言 > 言 の Q () 17 / 24

Modular curves approach

Theorem (Attributed to Shimura,1973)

If $H \subseteq GL_2(\mathbb{Z}/\ell^n\mathbb{Z})$ is such that $-1 \in H$ and $\det(H) = (\mathbb{Z}/\ell^n\mathbb{Z})^*$. Then $\exists X_H(j,t) \in \mathbb{Q}(j,t)$ such that the following conditions are equivalent.

- **2** $\exists t_0 \in \mathbb{Q}$ such that $X_{\mathrm{H}}(j(\mathrm{E}), t_0) = 0$.

Modular curves approach

Theorem (Attributed to Shimura,1973)

If $H \subseteq GL_2(\mathbb{Z}/\ell^n\mathbb{Z})$ is such that $-1 \in H$ and $\det(H) = (\mathbb{Z}/\ell^n\mathbb{Z})^*$. Then $\exists X_H(j,t) \in \mathbb{Q}(j,t)$ such that the following conditions are equivalent.

- **2** $\exists t_0 \in \mathbb{Q}$ such that $X_{\mathrm{H}}(\mathbf{j}(\mathbf{E}), t_0) = 0$.

Fast computations of $X_{\rm H}$

[RZB] Jeremy Rouse and David Zureick-Brown, "Elliptic curves over $\mathbb Q$ and 2-adic images of Galois" (2015)

• Complete description of possible 2-adic Galois images.

[SZ] Andrew Sutherland and David Zywina, "Modular curves of prime-power level with infinitely many rational points" (2017)

• Complete description of possible ℓ -adic Galois images contained in subgroups containing -1.

Example

Curve	j(E)	$\# \operatorname{Gal}(\mathbb{Q}(\operatorname{E}[3])/\mathbb{Q})$	\bar{v}_3
$y^2 = x^3 - 336x + 448$	1792	12	³⁹ /32
$y^2 = x^3 - 7^2 \cdot 336x + 7^3 \cdot 448$	1792	6	54/32

The modular curves approach does not work for arbitrary H.

Example

Curve	j(E)	$#$ Gal($\mathbb{Q}(E[3])/\mathbb{Q})$	\overline{v}_3
$y^2 = x^3 - 336x + 448$	1792	12	³⁹ /32
$y^2 = x^3 - 7^2 \cdot 336x + 7^3 \cdot 448$	1792	6	54/32

The modular curves approach does not work for arbitrary ${\rm H}.$

Let H be a subgroup of $\operatorname{GL}_2(\mathbb{Z}/\ell^n\mathbb{Z})$.

$$\begin{array}{c|c} -1 \notin \mathbf{H} & -1 \in \mathbf{H} \\ \ell = 2 & [\mathsf{RZB}] & [\mathsf{RZB}], [\mathsf{SZ}] \\ \ell \neq 2 & [\mathsf{SZ}] \end{array}$$

Our contribution

List of parametrized elliptic curves having non-generic Galois image not containing -1 when $\ell^n \in \{3, 3^2, 3^3, 5, 5^2, 7, 13\}$.

When $-1 \not\in H$

Let \widetilde{H} be subgroup of $\operatorname{GL}_2(\mathbb{Z}/\ell^n\mathbb{Z})$ containing -1 with full determinant; let $\operatorname{E}_t : y^2 = x^3 + A(t)x + B(t)$ be such that $\operatorname{Gal}(\mathbb{Q}(t)(\operatorname{E}_t[\ell^n])/\mathbb{Q}(t)) \subset \widetilde{H}.$

Computer Algebra Approach : Let H be subgroup of \widetilde{H} such that $[\widetilde{H}:H] = 2$ and $\widetilde{H} = \langle H, -1 \rangle$.

New results

Some families with exceptional mod ℓ^n Galois images for $\ell^n \in \{3, 9, 27\}$.

Н	(Order, index)	$E: y^2 = x^3 + a(t)x + b(t)$
$\langle \left(\begin{smallmatrix} 2 & 1 \\ 0 & 1 \end{smallmatrix}\right), \left(\begin{smallmatrix} 1 & 2 \\ 0 & 1 \end{smallmatrix}\right) \rangle \subset \mathrm{GL}_2(\mathbb{Z}/3\mathbb{Z})$	(6,8)	$a = -3(t+3)(t-27)^3,$ $b = -2(t^2+18t-27)(t-27)^4$
$ \begin{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 4 & 0 \\ 0 & 7 \end{pmatrix}, \\ \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix} \rangle \subset \operatorname{GL}_2(\mathbb{Z}/9\mathbb{Z}) $	(162, 24)	$a = -3(t^3 + 9t^2 + 27t + 3)(t + 3),$ $b = (-2t^6 - 36t^5 - 270t^4 - 1008t^3) - 1782t^2 - 972t + 54)$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(4374, 72)	$a = -3(t^9 + 9t^6 + 27t^3 + 3)(t^3 + 3),$ $b = -2t^{18} - 36t^{15} - 270t^{12} - 1008t^9$ $-1782t^6 - 972t^3 + 54$

Comparing different families

<ロト < 部ト < 目ト < 目ト 目 の Q C 22/24

A criteria to compare smoothness properties

Notation : $s \sim t$ if $t - \sqrt{t} < s < t + \sqrt{t}$.

Can we claim the following? For E an elliptic curve, there exists $\alpha(E)\in\mathbb{R}$ is such that

$$\frac{\#\{p \sim n \mid \#\mathbb{E}(\mathbb{F}_p) \text{ is B-smooth}\}}{\#\{p \mid p \sim n\}} = \frac{\#\{x \sim ne^{\alpha(\mathbf{E})} \mid x \text{ is B-smooth}\}}{\#\{x \mid x \sim ne^{\alpha(\mathbf{E})}\}}$$

Definition

Let E be an elliptic curve and ℓ a prime. Let $\alpha_{\ell}(\mathsf{E}) = (\frac{1}{\ell-1} - \bar{v}_{\ell}(\mathsf{E})) \log \ell$. We define,

$$\alpha(\mathbf{E}) = \sum_{\ell} \alpha_{\ell}(\mathbf{E}).$$

In general α is negative and it works experimentally very well.

Theorem

There are only finitely many values of $\alpha(E).$ And the best among them is approximately -3.43.

Open questions

• Proving theoretically that α works.

Open questions

- Proving theoretically that α works.
- There are curves where 2-Galois and 3-Galois are generic however 6-Galois is not. To what extent can these curves be used for ECM ?

Open questions

- Proving theoretically that α works.
- There are curves where 2-Galois and 3-Galois are generic however 6-Galois is not. To what extent can these curves be used for ECM ?
- Generalising the above work over number fields. In the NFS algorithm for discrete logarithms, one can have to factor many integers of the form $a^4 + b^4$. In this case, we search families over $\mathbb{Q}(\zeta_8)$.

Open questions

- Proving theoretically that α works.
- There are curves where 2-Galois and 3-Galois are generic however 6-Galois is not. To what extent can these curves be used for ECM ?
- Generalising the above work over number fields. In the NFS algorithm for discrete logarithms, one can have to factor many integers of the form $a^4 + b^4$. In this case, we search families over $\mathbb{Q}(\zeta_8)$.

Thank you!

α : An efficient tool

 $\label{eq:curves} \textbf{ 0} \quad \mbox{Curves with torsion } \mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/8\mathbb{Z}: \mbox{For these curves } \bar{\nu}_2 \mbox{ changes from } \frac{14}{9} \mbox{ to } \frac{16}{3}. \\ \mbox{Thus,}$

$$lpha_{\mathbb{Z}/2\mathbb{Z} imes\mathbb{Z}/8\mathbb{Z}}=lpha_{generic}+(14/9-16/3)\log(2)pprox-3.4355$$

2 Suyama-11 family : For these curves, \bar{v}_2 changes from $\frac{14}{9}$ to $\frac{11}{3}$ and \bar{v}_3 changes from $\frac{87}{128}$ to $\frac{27}{16}$. Thus,

 $\alpha_{\textit{Suyama}-11} = \alpha_{\textit{generic}} + (14/9 - 11/3) \log(2) + (87/128 - 27/16) \log(3) \approx -3.3825.$

Numerical experiments with α . ($n = 2^{25}$)

1 Curves with torsion $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/8\mathbb{Z}$.

	п	ne^{lpha}	$\#E(\mathbb{F}_p)$	error _n	$\operatorname{error}_{\operatorname{\mathit{ne}}^{\alpha}}$
$B_1 = 30$	0.000518	0.005753	0.005126	889 %	10.89 %
$B_2 = 100$	0.008892	0.03883	0.042573	378.8 %	9.63 %

O Suyama-11

[n	ne^{lpha}	$\#E(\mathbb{F}_p)$	error _n	$\operatorname{error}_{ne^{\alpha}}$
	$B_1 = 30$	0.000518	0.005133	0.005743	1008 %	11.89 %
	$\mathrm{B}_2=100$	0.008892	0.04013	0.04101	361%,	2.19%

200

24 / 24