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Motivation : Cryptology

Integer factorization is an important problem in cryptology. There
are two types of algorithms to do so.

@ Algorithms which find all the factors < m with cost depending
on m and polynomially on the integer to factor. Ex. Trial
division, ECM - Elliptic Curve Method .

@ Algorithms whose cost depends on the size of integer to
factor. Ex. QS (Quadratic Sieve), NFS (Number Field
Sieve).
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Integer factorization is an important problem in cryptology. There
are two types of algorithms to do so.

@ Algorithms which find all the factors < m with cost depending
on m and polynomially on the integer to factor. Ex. Trial
division, ECM - Elliptic Curve Method .

@ Algorithms whose cost depends on the size of integer to
factor. Ex. QS (Quadratic Sieve), NFS (Number Field
Sieve).The building block which takes a non-negligible
proportion of time in NFS is ECM.
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Preliminaries - 1

@ K a field, E is a curve defined by y? = x3 + ax + b where
a, b € K such that 4a% +27b? # 0. We call E an elliptic curve
over K.

@ We note the set of points on E with coordinates in K by
E(K). With a distinguished point Og, E(K) has a group law
under which it forms an Abelian group.

© An important quantity assoaated with an elliptic curve is its

J-invariant which is 1728m



ECM algorithm

Algorithm 1 Practical version of ECM (Lenstra + Montgomery)

INPUT : Integers n and B
OUTPUT : a non-trivial factor of n.

1: while No factor is found do
2 E/Q <« an elliptic curve and P = (x : y : z) € E(Q).
3 P« [B!]P =(xg : yg : z8) mod n
4: g < gcd(zp, n)
5 if g ¢ {1, n} then return g
6 end if
7: end while




Correctness

Let p be an unknown prime factor of n. If ord(P) in E(F,) divides
B!, then
[B'](xp :yp:2zp)=(0:1:0)mod p.

In this case p divides gecd(zp, n).

Sufficient condition
#E(F,) is B—smooth i.e. all its prime factors are < B.

Idea of Montgomery

Question : What if #E(F,) is even for all primes p?
Theorem : If m divides torsion order of E(Q) then m divides
#E(FF,) for almost all p.




Montgomery heuristic

Definition

Let E be an elliptic curve, £ be a prime and n be a sufficiently large
integer. We define empirical average valuation,

S en(vali(#E(E,))
a #p<np

Curves with larger average valuation are ECM-friendly.
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How to improve average valuation ?

@ Montgomery (1985), Suyama (1985), Atkin et Morain (1993),
Bernstein et al (2010) : Torsion points over Q
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How to improve average valuation ?

@ Montgomery (1985), Suyama (1985), Atkin et Morain (1993),
Bernstein et al (2010) : Torsion points over Q

@ Brier and Clavier (2010) : Torsion points over Q(/)
V2(#E(Fp)) = 3V2(#E(Fp)lp = 1 mod 4) + 32(#E(Fp) | p = 3 mod 4)

© Barbulescu et al (2012) : Better average valuation without
additional torsion points by reducing the size of a "specific”
Galois group.
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Preliminaries - 2

Definition - Theorem

For an elliptic curve E and a an integer m, we define the
m-division polynomial as

V,m(X) = 11 (X —x) € Q[X].

(x:£y:1)€E(Q)[m]

Let E: y?2 = x3 + ax + b then \U(E3)—X + 2ax? + 4bx — %




Preliminaries - 2

Definition - Theorem
For an elliptic curve E and a an integer m, we define the

m-division polynomial as

V,m(X) = 11 (X —x) € Q[X].

(x:+y:1)€E(Q)[m]

Example
1.2

Let E: y?2 = x3 + ax + b then \U(E3)—X + 2ax? + 4bx — 3

Division polynomials can be computed recursively thus it is not
necessary to know E(Q)[m] and they are used to construct the

torsion fields.




Preliminaries - 3

Definition (m-torsion field)

Let E be an elliptic curve on Q, m a positive integer. The
m-torsion field Q(E[m]) is the extension of Q by the coordinates of
m-torsion points in Q.

As E(Q)[m] ~ Z/mZ x Z/mZ, G = Gal(Q(E[m])/Q) is always a
subgroup of Aut(Z/mZ x 7./ mZ) = GLy(Z/mZ).
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Definition (m-torsion field)

Let E be an elliptic curve on Q, m a positive integer. The
m-torsion field Q(E[m]) is the extension of Q by the coordinates of
m-torsion points in Q.

As E(Q)[m] ~ Z/mZ x Z/mZ, G = Gal(Q(E[m])/Q) is always a
subgroup of Aut(Z/mZ x 7./ mZ) = GLy(Z/mZ).

Mod m Galois Image (Definition)
pE,m - Gal(Q(E[m])/Q) — GL2(Z/mZ).

Weil pairing

Q(Cm) is contained in Q(E[m]) and we have

det(pp,m(Gal(Q(E[m])/Q))) = (Z/mZ)".




Galois images

Theorem (Serre, 1972)
Let E be an elliptic curve without complex multiplication.

@ (Generic case) For all primes ¢ outside a finite set depending
on E and for all k > 1, Gal(Q(E[¢X])/Q) = GLa(Z/¢¥Z).

@ For all primes £ and k > 1, the sequence

tk = [GL2(Z/C*Z) : pg e (Gal(Q(E[E4])/Q))]

is non-decreasing and eventually stationary.

A conjecture of Serre

"La condition £ > 41 suffit-elle a assurer que pg est surjectif 7"
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How to improve average valuation ?

Theorem (Barbulescu et al. 2012)

Let £ be a prime and E; and Es be two elliptic curves. If

Vn € N, Gal(Q(E1[¢"])/Q) ~ Gal(Q(E2[¢"])/Q) then
ve(E1) = v(E2).

Thus in order to change the average valuation,
we must change Gal(Q(E[¢"])/Q) for at least one n.
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How to improve average valuation ?

Theorem (Barbulescu et al. 2012)

Let £ be a prime and E; and Es be two elliptic curves. If
Vn € N, Gal(Q(E1[¢"])/Q) ~ Gal(Q(E2[¢"])/Q) then
e(E1) = v(Eo).

Thus in order to change the average valuation,
we must change Gal(Q(E[¢"])/Q) for at least one n.

Example

Primes found
between 215,222
Suyama Z/6Z | 193 | 7529

Suyama - 11 | Z/6Z | 11/3 | 9041 (20% more)

Family Torsion | v
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Computer algebra Approach

Computer algebra Approach
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Computer algebra Approach

Computer algebra approach : Subfields

Question : Under which conditions on ty € Q,

Gal(K(t)/Q) C H?

K(t)

Gal(K(1)/Q(t)) = G

Q(t) = K(1)¢

K(t)H

Pi(x) € Q(t)[x]

Answer : When Py (x) has a root in Q.
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Computer algebra Approach

For particular subgroups H

Let G = Gal(K(t)/Q(t)) and H C G.

Q@ G = H : It suffices to check that for any tower of extensions
between Q(t) and K(t), every defining polynomial remains
irreducible. The complexity is the complexity of multivariate
polynomial factorization of degrees < [K(t) : Q(t)]. This case
becomes easy when [K(t) : Q(t)] is small.

Q@ [G:H]=2:
@ Factorize Disc(K(t)) € Z[t].
@ For each squarefree factor f € Z[t] of Disc(K(t)), check using
specializations if K(t)! is defined by X? — f.
This case becomes easy if the factors of Disc(K(t)) are
known.

14 /24



Computer algebra Approach

Particular case : K = Q(a, b)(E[{]) et G = H

Idea : Formal construction of torsion field and sufficient condition

that its Galois group is generic.
Sufficient condition : When all the following extensions have

generic degrees.
Ka4 = Q(a, b)(x1, %2, y1, y2) = Q(a, b)(E[{])
‘P4=y27(xz3+axz+b)
K3z = Q(a, b)(x1,x2, y1)
P3 =y? — (4 + axi + b)
Ky = Q(a, b)(xa1, %)
P> = a factor of W of degree ZQT_Z

Kl = Q(37 b)(Xl)

‘ P; = WV of degree %
Ko = Q(a, b)
As E[l] ~ Z/¢Z x Z/¢Z, Q(a, b)(E[¢]) is constructed by only 4 extensions. J
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Computer algebra Approach

Valuation m = 4, Montgomery curve

Let E : By? = x3 + Ax2 + x be a rational elliptic curve with B(A2 —4) # 0. Then the
generic average valuation ¥ (E) is 10/3 & 3.33, except,

@ If A2 —4#0ie E(Q)[2] # Z/2Z x Z/2Z, we note W be the quartic factor of
its 4-division polynomial. Then we have,

Fact. Pat. of W | Condition(s) | Index Valuation
47
(2,2) A= 72§4+j 24 | 10/33.33
(4) 222 = 10 12 | 15~ 367
® IfA2—4=Die if A= 5. Then we have,
Fact. Pat. of U Condition(s) Index | Valuation
(1,1,2) A= % and B= —t(t2+4)0 | 48 | 145~ 4.67
_ 4246116 ~

(1,1,2) A= SGES 24 | 23/~ 3.83
(2,2) A= 4 and A2 _ 24 | Bs~4.33
(2,2) A= Eit 12 | 15~ 367
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Modular curves approach

Modular curves approach
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Modular curves approach

Modular curves approach

Theorem (Attributed to Shimura,1973)
If HC GLy(Z/¢"Z) is such that —1 € H and det(H) = (Z/¢"Z)*.
Then 3 Xu(J, t) € Q(J, t) such that the following conditions are
equivalent.

Q@ Gal(Q(E[¢"])/Q) € H

@ Tty € Q such that Xy (j(E), to) = 0.
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Modular curves approach

Theorem (Attributed to Shimura,1973)
If HC GLy(Z/¢"Z) is such that —1 € H and det(H) = (Z/¢"Z)*.
Then 3 Xu(J, t) € Q(J, t) such that the following conditions are
equivalent.

Q@ Gal(Q(E[¢"])/Q) € H

@ Tty € Q such that Xy (j(E), to) = 0.

Fast computations of Xy

[RZB] Jeremy Rouse and David Zureick-Brown, "Elliptic curves over Q and 2-adic
images of Galois” (2015)

@ Complete description of possible 2-adic Galois images.

[SZ] Andrew Sutherland and David Zywina, "Modular curves of prime-power level with
infinitely many rational points” (2017)

@ Complete description of possible ¢-adic Galois images contained in subgroups
containing —1.
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Modular curves approach

Curve J(E) | #Gal(Q(E[3])/Q) | vs
y? =x>—336x +448 | 1792 12 /52
y?2 =x%—77-336x + 7° - 448 | 1792 6 54/32

<

The modular curves approach does not work for arbitrary H. ‘
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Curve J(E) | #Gal(Q(E[3])/Q) | vs
y? =x>—336x +448 | 1792 12 /52
y?2 =x%—77-336x + 7° - 448 | 1792 6 54/32

<

The modular curves approach does not work for arbitrary H. ‘

Let H be a subgroup of GLo2(Z/¢"Z).

~1¢H -leH
¢t=2[ [RZB] [RZBJ, [5Z]
042 [SZ]

Our contribution

List of parametrized elliptic curves having non-generic Galois image
not containing —1 when ¢" € {3,32,33,5,52,7,13}.
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Modular curves approach

When —1 ¢ H

Let H be subgroup of GLo(Z/¢"Z) containing —1 with full
determinant; let E; : y? = x> + A(t)x + B(t) be such that

Gal(Q(t)(E:[¢"])/Q(t)) <

Computer Algebra Approach : Let H be subgroup of H such
that [H: Hl=2and H= (H,-1).

K = Q(t)(E[)

H K" = Q(t)(V¥)
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Modular curves approach

New results

Some families with exceptional mod ¢" Galois images for
" e {3,9,27}.

H (Order, index) E:y? =x3+ a(t)x + b(t)

a=—3(t+3)(t —27)3,
2)) C GL2(Z/3Z) (6,8) b= —2(t? + 18t — 27)(t — 27)*

a=—3(t3+9t2 + 27t + 3)(t + 3),

((33) (89). (39). b= (—2t5 —36¢5 — 270t - 100813
13). (89)) € GLa(2/92) (162, 24) —1782t2 — 972t + 54)
12 410 19 0
<£§(1)) (9101622 ( 0410)' a=—3(t>+9t° + 2763 + 3)(£2 + 3),
( 0 19)' 019)r (o 4)' b= —2t!8 — 36¢!5 — 270t!2 — 1008t°
5%). (59)) C GLa(z/272) | (4374,72) —1782t6 — 972t 4 54
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Comparing different families

Comparing different families
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Comparing different families

A criteria to compare smoothness properties

Notation : s ~ tif t — vt < s < t+/t.

Can we claim the following ? For E an elliptic curve, there exists a(E) € R is such that

#{p ~ n|#E(F,) is B-smooth} _ #{x ~ ne®(™) | x is B-smooth}
#{p|p ~ n} #{x|x ~ nexB)}

Definition

|

Let E be an elliptic curve and £ a prime. Let ay(E) = (

o(E) = Z ay(E).
V4

7—1 — %(E)) log £. We define,

In general o is negative and it works experimentally very well. J

There are only finitely many values of a(E). And the best among them is
approximately -3.43.

23 /24



Comparing different families

Open questions

@ Proving theoretically that o works.
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@ Generalising the above work over number fields. In the NFS

algorithm for discrete logarithms, one can have to factor many
integers of the form a* + b*. In this case, we search families

over Q(Cs)-
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Comparing different families

Open questions

@ Proving theoretically that o works.

@ There are curves where 2-Galois and 3-Galois are generic
however 6-Galois is not. To what extent can these curves be
used for ECM ?

@ Generalising the above work over number fields. In the NFS

algorithm for discrete logarithms, one can have to factor many
integers of the form a* + b*. In this case, we search families

over Q(Cs)-

Thank you'!
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Comparing different families

o : An efficient tool

@ Curves with torsion Z/27Z x 7Z,/87 : For these curves 7> changes from %4 to %.

Thus,
Q7,/27.%7,/87 = Olgeneric + (14/9 — 16/3) log(2) ~ —3.4355.

@ Suyama-11 family : For these curves, ¥» changes from % to % and v3 changes

87 27
from 125 0 T5- Thus,

QSuyama—11 = Qgeneric-+(14/9—11/3) log(2)+(87/128—27/16) log(3) ~ —3.3825.

Numerical experiments with a. (n = 2%°)

@ Curves with torsion Z/2Z x Z/8Z.

n ne® #E(Fp) errory €ITOT pecr
B; =30 0.000518 | 0.005753 | 0.005126 889 % 10.89 %
B, =100 | 0.008892 0.03883 0.042573 | 378.8 % 9.63 %

@ Suyama-11

n ne® #E(F,) €rror, | errorpec
B; =30 | 0.000518 | 0.005133 | 0.005743 | 1008 % | 11.89 %
B, =100 | 0.008892 | 0.04013 0.04101 361%, 2.19%
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