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Rational functions

Why are they important?

→ powerful approximations near singularities or on unbounded domains

Some applications:

elementary + special functions
recursive filter design
matrix exponentials & stiff PDEs
optimal control problems
...
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Rational minimax approximation

Input: f ∈ C([a, b]), target type (m,n) ∈ N2

Output: r∗ ∈ Rm,n =

{
p

q
, p ∈ Rm[x], q ∈ Rn[x]

}
s.t.

‖f − r∗‖∞ is minimal.

→ denote this minimax error with Em,n(f)

→ theoretical results:

existence & unicity of r∗ [de la Vallée Poussin, Walsh]

presence of the defect:

→ if r∗ = p∗/q∗ in irreducible form, then its defect is

d = min {m− deg p∗, n− deg q∗}

Alternation Theorem [Achieser 1930]:
→ f − r∗ equioscillates at least m+ n+ 2− d times
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A classic example: f(x) = |x|, x ∈ [−1, 1]

→ consider best uniform approximations:

degree 8 polynomial
type (4, 4) rational function

Error curve
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A classic example: f(x) = |x|, x ∈ [−1, 1]

→ asymptotic behavior

En,0(f) ∼ β/n, β = 0.2801... [Varga & Carpenter 1985]
En,n(f) ∼ 8e−

√
n, [Newman 1964, Stahl 1993]

→ rational minimax approximations can be difficult to compute
e.g. [Varga, Ruttan & Carpenter 1991] conjecture Stahl’s result using 200-digit
arithmetic for n 6 80

→ codes (the Remez algorithm):
Maple: numapprox[minimax]
Mathematica: MinimaxApproximation

Chebfun (Matlab): minimax

5 / 18



A classic example: f(x) = |x|, x ∈ [−1, 1]

→ asymptotic behavior

En,0(f) ∼ β/n, β = 0.2801... [Varga & Carpenter 1985]
En,n(f) ∼ 8e−

√
n, [Newman 1964, Stahl 1993]

→ rational minimax approximations can be difficult to compute
e.g. [Varga, Ruttan & Carpenter 1991] conjecture Stahl’s result using 200-digit
arithmetic for n 6 80

→ codes (the Remez algorithm):
Maple: numapprox[minimax]
Mathematica: MinimaxApproximation

Chebfun (Matlab): minimax

5 / 18



A classic example: f(x) = |x|, x ∈ [−1, 1]

→ asymptotic behavior

En,0(f) ∼ β/n, β = 0.2801... [Varga & Carpenter 1985]
En,n(f) ∼ 8e−

√
n, [Newman 1964, Stahl 1993]

→ rational minimax approximations can be difficult to compute
e.g. [Varga, Ruttan & Carpenter 1991] conjecture Stahl’s result using 200-digit
arithmetic for n 6 80

→ codes (the Remez algorithm):
Maple: numapprox[minimax]
Mathematica: MinimaxApproximation

Chebfun (Matlab): minimax

5 / 18



A classic example: f(x) = |x|, x ∈ [−1, 1]

→ asymptotic behavior

En,0(f) ∼ β/n, β = 0.2801... [Varga & Carpenter 1985]
En,n(f) ∼ 8e−

√
n, [Newman 1964, Stahl 1993]

→ rational minimax approximations can be difficult to compute
e.g. [Varga, Ruttan & Carpenter 1991] conjecture Stahl’s result using 200-digit
arithmetic for n 6 80

→ codes (the Remez algorithm):
Maple: numapprox[minimax]
Mathematica: MinimaxApproximation

Chebfun (Matlab): minimax

5 / 18



Barycentric representations

→ many different ways of representing rational functions

→ barycentric form for type (n, n) rational functions

r(z) =
N(z)

D(z)
=

n∑
k=0

αk

z − tk

/ n∑
k=0

βk
z − tk

Notation:
{αk}, {βk} barycentric coefficients
{tk} support points
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Barycentric representations

Why use adaptive barycentric formulas?

→ problem dependent {tk} ⇒ well conditioned representation

Example:
→ the adaptive Antoulas-Anderson (AAA) algorithm [Nakatsukasa, Sète &
Trefethen 2018]: greedy least squares approximation
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Example: f(x) = |x|, x ∈ [−1, 1], type (20, 20)

p/q vs N/D
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The rational Remez algorithm

Some assumptions:

no defect (d = 0) → required
diagonal case m = n → for convenience

Step 1: choose a reference set a 6 x0 < · · · < x2n+1 6 b

→ iterate the following steps until convergence:

Step 2: find r ∈ Rn,n and λ ∈ R s.t.

f(xk)− r(xk) = (−1)k+1λ, k = 0, . . . , 2n+ 1

Step 3: among local extrema of f − r, take 2n+ 2 new points

a 6 x′0 < · · · < x′2n+1 6 b,

f − r alternates in sign + at least one global extrema over [a, b] and

|f(x′k)− r(x′k)| > |λ| , k = 0, . . . , 2n+ 1
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The rational Remez algorithm

Convergence:

→ usually quadratic [Curtis & Osborne 1966]
→ guaranteed only if starting reference set is close enough to optimal

What can go wrong?

→ no pole-free solution in Step 2
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Step 1: initial reference set

→ need suff. good initial guess for {xk}

Our strategy:
use Carathéodory-Fejér (CF) approximation [Trefethen & Gutknecht 1983]
AAA-Lawson approx. (adaptively re-weighted least squares AAA variant)
extrapolation from lower degree approx. ((2, 2), (3, 3), (4, 4), . . .)
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Step 2: find r

→ find r = N/D ∈ Rn,n s.t.

N(xk) = D(xk)(f(xk)− (−1)k+1λ), k = 0, . . . , 2n+ 1

→ matrix form

Cα =



f(x0)

f(x1)
. . .

f(x2n+1)

− λ

−1

1
−1

. . .


Cβ,

C ∈ R(2n+2)×(n+1) Cauchy matrix, Ck,j = 1/(xk − tj)

→ generalized eigenvalue problem

[
C −FC

] [α
β

]
= λ

[
0 −SC

] [α
β

]
F = diag(f(xk)), S = diag((−1)k+1)
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Step 2: find r

→ generalized eigenvalue problem

[
C −FC

] [α
β

]
= λ

[
0 −SC

] [α
β

]

→ can transform it into a symmetric eigenvalue problem

QT
1 (SF )Q1Rβ = λRβ,

where ωx(x) =
∏2n+1

k=0 (x− xk), ωt(x) =
∏n

j=0(x− tj),

∆ = diag
(
ωt(x0)2

ω′x(x0)
, . . . ,

ωt(x2n+1)2

ω′x(x2n+1)

)
and |∆|1/2C = Q1R
→ well conditioned eigenvalue computation
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Step 2: choice of the {tk}

→ because we perform the QR factorization of |∆|1/2C, take {tk} to minimize

min
Γ
κ2(|∆|1/2CΓ),

Γ diagonal scaling matrix

→ we show that this happens (with optimum 1) for

tk = x2k+1, k = 0, . . . , n

14 / 18



Step 2: choice of the {tk}

→ because we perform the QR factorization of |∆|1/2C, take {tk} to minimize

min
Γ
κ2(|∆|1/2CΓ),

Γ diagonal scaling matrix

→ we show that this happens (with optimum 1) for

tk = x2k+1, k = 0, . . . , n

14 / 18



Step 2: choice of the {tk}

→ because we perform the QR factorization of |∆|1/2C, take {tk} to minimize

min
Γ
κ2(|∆|1/2CΓ),

Γ diagonal scaling matrix

→ we show that this happens (with optimum 1) for

tk = x2k+1, k = 0, . . . , n

14 / 18



Step 3: next reference set

Approach:

→ decompose [a, b] into nondegenerate intervals

[a, x0], [x0, x1], . . . , [x2n, x2n+1], [x2n+1, b]

→ detect singularities of f + further decomp. of [a, b]

→ use splitting on [Pachón, Platte & Trefethen 2010]

→ Chebyshev interpolants of e(x) = f(x)− r(x) on each subinterval

→ colleague matrix root finding [Specht, Good]
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Examples

DEMO
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Conclusion

→ robust rational Remez algorithm (available now in Chebfun):

adaptive barycentric representation → eigenvalue problem with good stability
good choice of the initial reference points (CF, AAA-Lawson, extrapolation)
colleague matrix root finding

→ what I did not talk about:
what to do in degenerate d > 0 cases
how do we handle m 6= n problem instances

→ the details:
B. Beckermann, S.-I. Filip, Y. Nakatsukasa, L. N. Trefethen, Rational minimax
approximation via adaptive barycentric representations, arXiv:1705.10132, under
minor revision for SIAM Journal on Scientific Computing
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Conclusion

→ directions for future work:
handle weighted approximation problems (e.g., relative error)
extensions to:

the complex case
bivariate approximation

Thank you!
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