Rational minimax approximation via adaptive barycentric representations

Silviu Filip, CAIRN team, Univ Rennes, Inria, CNRS, IRISA joint work with Bernhard Beckermann, Yuji Nakatsukasa and Lloyd N. Trefethen

January 22, 2018

Rational functions

Why are they important?
\rightarrow powerful approximations near singularities or on unbounded domains

Rational functions

Why are they important?

\rightarrow powerful approximations near singularities or on unbounded domains
Some applications:

- elementary + special functions
- recursive filter design
- matrix exponentials \& stiff PDEs
- optimal control problems
- ...

Rational minimax approximation

Input: $f \in \mathcal{C}([a, b])$, target type $(m, n) \in \mathbb{N}^{2}$
Output: $r^{*} \in \mathcal{R}_{m, n}=\left\{\frac{p}{q}, p \in \mathbb{R}_{m}[x], q \in \mathbb{R}_{n}[x]\right\}$ s.t.

$$
\left\|f-r^{*}\right\|_{\infty} \text { is minimal. }
$$

\rightarrow denote this minimax error with $E_{m, n}(f)$

Rational minimax approximation

Input: $f \in \mathcal{C}([a, b])$, target type $(m, n) \in \mathbb{N}^{2}$
Output: $r^{*} \in \mathcal{R}_{m, n}=\left\{\frac{p}{q}, p \in \mathbb{R}_{m}[x], q \in \mathbb{R}_{n}[x]\right\}$ s.t.

$$
\left\|f-r^{*}\right\|_{\infty} \text { is minimal. }
$$

\rightarrow denote this minimax error with $E_{m, n}(f)$
\rightarrow theoretical results:

Rational minimax approximation

Input: $f \in \mathcal{C}([a, b])$, target type $(m, n) \in \mathbb{N}^{2}$
Output: $r^{*} \in \mathcal{R}_{m, n}=\left\{\frac{p}{q}, p \in \mathbb{R}_{m}[x], q \in \mathbb{R}_{n}[x]\right\}$ s.t.

$$
\left\|f-r^{*}\right\|_{\infty} \text { is minimal. }
$$

\rightarrow denote this minimax error with $E_{m, n}(f)$
\rightarrow theoretical results:

- existence \& unicity of r^{*} [de la Vallée Poussin, Walsh]

Rational minimax approximation

Input: $f \in \mathcal{C}([a, b])$, target type $(m, n) \in \mathbb{N}^{2}$
Output: $r^{*} \in \mathcal{R}_{m, n}=\left\{\frac{p}{q}, p \in \mathbb{R}_{m}[x], q \in \mathbb{R}_{n}[x]\right\}$ s.t.

$$
\left\|f-r^{*}\right\|_{\infty} \text { is minimal. }
$$

\rightarrow denote this minimax error with $E_{m, n}(f)$
\rightarrow theoretical results:

- existence \& unicity of r^{*} [de la Vallée Poussin, Walsh]
- presence of the defect:
\rightarrow if $r^{*}=p^{*} / q^{*}$ in irreducible form, then its defect is

$$
d=\min \left\{m-\operatorname{deg} p^{*}, n-\operatorname{deg} q^{*}\right\}
$$

Rational minimax approximation

Input: $f \in \mathcal{C}([a, b])$, target type $(m, n) \in \mathbb{N}^{2}$
Output: $r^{*} \in \mathcal{R}_{m, n}=\left\{\frac{p}{q}, p \in \mathbb{R}_{m}[x], q \in \mathbb{R}_{n}[x]\right\}$ s.t.

$$
\left\|f-r^{*}\right\|_{\infty} \text { is minimal. }
$$

\rightarrow denote this minimax error with $E_{m, n}(f)$
\rightarrow theoretical results:

- existence \& unicity of r^{*} [de la Vallée Poussin, Walsh]
- presence of the defect:
\rightarrow if $r^{*}=p^{*} / q^{*}$ in irreducible form, then its defect is

$$
d=\min \left\{m-\operatorname{deg} p^{*}, n-\operatorname{deg} q^{*}\right\}
$$

- Alternation Theorem [Achieser 1930]: $\rightarrow f-r^{*}$ equioscillates at least $m+n+2-d$ times

A classic example: $f(x)=|x|, x \in[-1,1]$

A classic example: $f(x)=|x|, x \in[-1,1]$

\rightarrow consider best uniform approximations:

- degree 8 polynomial

Error curve

A classic example: $f(x)=|x|, x \in[-1,1]$

\rightarrow consider best uniform approximations:

- degree 8 polynomial
- type $(4,4)$ rational function

Error curve

A classic example: $f(x)=|x|, x \in[-1,1]$

\rightarrow asymptotic behavior

$$
\left.\begin{array}{ll}
E_{n, 0}(f) \sim \beta / n, & \beta=0.2801 \ldots
\end{array}\right][\text { Varga \& Carpenter 1985] }] \text { [} \quad \text { [Newman 1964, Stahl 1993] }
$$

A classic example: $f(x)=|x|, x \in[-1,1]$

\rightarrow asymptotic behavior

$$
\begin{array}{lll}
E_{n, 0}(f) \sim \beta / n, & \beta=0.2801 \ldots & {[\text { Varga \& Carpenter 1985] }} \\
E_{n, n}(f) \sim 8 e^{-\sqrt{n}}, & & {[\text { Newman 1964, Stahl 1993] }}
\end{array}
$$

\rightarrow rational minimax approximations can be difficult to compute
e.g. [Varga, Ruttan \& Carpenter 1991] conjecture Stahl's result using 200-digit arithmetic for $n \leqslant 80$

A classic example: $f(x)=|x|, x \in[-1,1]$

\rightarrow asymptotic behavior

$$
\begin{array}{lll}
E_{n, 0}(f) \sim \beta / n, & \beta=0.2801 \ldots & {[\text { Varga \& Carpenter 1985] }} \\
E_{n, n}(f) \sim 8 e^{-\sqrt{n}}, & & {[\text { Newman 1964, Stahl 1993] }}
\end{array}
$$

\rightarrow rational minimax approximations can be difficult to compute
e.g. [Varga, Ruttan \& Carpenter 1991] conjecture Stahl's result using 200-digit arithmetic for $n \leqslant 80$
\rightarrow codes (the Remez algorithm):

- Maple: numapprox[minimax]
- Mathematica: MinimaxApproximation

A classic example: $f(x)=|x|, x \in[-1,1]$

\rightarrow asymptotic behavior

$$
\begin{array}{lll}
E_{n, 0}(f) \sim \beta / n, & \beta=0.2801 \ldots & {[\text { Varga \& Carpenter 1985] }} \\
E_{n, n}(f) \sim 8 e^{-\sqrt{n}}, & & {[\text { Newman 1964, Stahl 1993] }}
\end{array}
$$

\rightarrow rational minimax approximations can be difficult to compute
e.g. [Varga, Ruttan \& Carpenter 1991] conjecture Stahl's result using 200-digit arithmetic for $n \leqslant 80$
\rightarrow codes (the Remez algorithm):

- Maple: numapprox[minimax]
- Mathematica: MinimaxApproximation
- Chebfun (Matlab): minimax

Barycentric representations

\rightarrow many different ways of representing rational functions

Barycentric representations

\rightarrow many different ways of representing rational functions
\rightarrow barycentric form for type (n, n) rational functions

$$
r(z)=\frac{N(z)}{D(z)}=\sum_{k=0}^{n} \frac{\alpha_{k}}{z-t_{k}} / \sum_{k=0}^{n} \frac{\beta_{k}}{z-t_{k}}
$$

Notation:

- $\left\{\alpha_{k}\right\},\left\{\beta_{k}\right\}$ barycentric coefficients
- $\left\{t_{k}\right\}$ support points

Barycentric representations

Why use adaptive barycentric formulas?
\rightarrow problem dependent $\left\{t_{k}\right\} \Rightarrow$ well conditioned representation

Barycentric representations

Why use adaptive barycentric formulas?
\rightarrow problem dependent $\left\{t_{k}\right\} \Rightarrow$ well conditioned representation

Example:

\rightarrow the adaptive Antoulas-Anderson (AAA) algorithm [Nakatsukasa, Sète \&
Trefethen 2018]: greedy least squares approximation

Example: $f(x)=|x|, x \in[-1,1]$, type $(20,20)$

$$
p / q \text { vs } N / D
$$

The rational Remez algorithm

The rational Remez algorithm

Some assumptions:

- no defect $(d=0) \rightarrow$ required
- diagonal case $m=n \rightarrow$ for convenience

The rational Remez algorithm

Some assumptions:

- no defect $(d=0) \rightarrow$ required
- diagonal case $m=n \rightarrow$ for convenience

Step 1: choose a reference set $a \leqslant x_{0}<\cdots<x_{2 n+1} \leqslant b$

The rational Remez algorithm

Some assumptions:

- no defect $(d=0) \rightarrow$ required
- diagonal case $m=n \rightarrow$ for convenience

Step 1: choose a reference set $a \leqslant x_{0}<\cdots<x_{2 n+1} \leqslant b$
\rightarrow iterate the following steps until convergence:

The rational Remez algorithm

Some assumptions:

- no defect $(d=0) \rightarrow$ required
- diagonal case $m=n \rightarrow$ for convenience

Step 1: choose a reference set $a \leqslant x_{0}<\cdots<x_{2 n+1} \leqslant b$
\rightarrow iterate the following steps until convergence:
Step 2: find $r \in \mathcal{R}_{n, n}$ and $\lambda \in \mathbb{R}$ s.t.

$$
f\left(x_{k}\right)-r\left(x_{k}\right)=(-1)^{k+1} \lambda, \quad k=0, \ldots, 2 n+1
$$

The rational Remez algorithm

Some assumptions:

- no defect $(d=0) \rightarrow$ required
- diagonal case $m=n \rightarrow$ for convenience

Step 1: choose a reference set $a \leqslant x_{0}<\cdots<x_{2 n+1} \leqslant b$
\rightarrow iterate the following steps until convergence:
Step 2: find $r \in \mathcal{R}_{n, n}$ and $\lambda \in \mathbb{R}$ s.t.

$$
f\left(x_{k}\right)-r\left(x_{k}\right)=(-1)^{k+1} \lambda, \quad k=0, \ldots, 2 n+1
$$

Step 3: among local extrema of $f-r$, take $2 n+2$ new points

$$
a \leqslant x_{0}^{\prime}<\cdots<x_{2 n+1}^{\prime} \leqslant b,
$$

$f-r$ alternates in sign + at least one global extrema over $[a, b]$ and

$$
\left|f\left(x_{k}^{\prime}\right)-r\left(x_{k}^{\prime}\right)\right| \geqslant|\lambda|, \quad k=0, \ldots, 2 n+1
$$

The rational Remez algorithm

Convergence:

\rightarrow usually quadratic [Curtis \& Osborne 1966]
\rightarrow guaranteed only if starting reference set is close enough to optimal

The rational Remez algorithm

Convergence:

\rightarrow usually quadratic [Curtis \& Osborne 1966]
\rightarrow guaranteed only if starting reference set is close enough to optimal

What can go wrong?

\rightarrow no pole-free solution in Step 2

Step 1: initial reference set

\rightarrow need suff. good initial guess for $\left\{x_{k}\right\}$

Step 1: initial reference set

\rightarrow need suff. good initial guess for $\left\{x_{k}\right\}$

Our strategy:

- use Carathéodory-Fejér (CF) approximation [Trefethen \& Gutknecht 1983]

Step 1: initial reference set

\rightarrow need suff. good initial guess for $\left\{x_{k}\right\}$

Our strategy:

- use Carathéodory-Fejér (CF) approximation [Trefethen \& Gutknecht 1983]
- AAA-Lawson approx. (adaptively re-weighted least squares AAA variant)

Step 1: initial reference set

\rightarrow need suff. good initial guess for $\left\{x_{k}\right\}$

Our strategy:

- use Carathéodory-Fejér (CF) approximation [Trefethen \& Gutknecht 1983]
- AAA-Lawson approx. (adaptively re-weighted least squares AAA variant)
- extrapolation from lower degree approx. $((2,2),(3,3),(4,4), \ldots)$

Step 2: find r

\rightarrow find $r=N / D \in \mathcal{R}_{n, n}$ s.t.

$$
N\left(x_{k}\right)=D\left(x_{k}\right)\left(f\left(x_{k}\right)-(-1)^{k+1} \lambda\right), \quad k=0, \ldots, 2 n+1
$$

Step 2: find r

\rightarrow find $r=N / D \in \mathcal{R}_{n, n}$ s.t.

$$
N\left(x_{k}\right)=D\left(x_{k}\right)\left(f\left(x_{k}\right)-(-1)^{k+1} \lambda\right), \quad k=0, \ldots, 2 n+1
$$

\rightarrow matrix form

$$
C \alpha=\left(\left[\begin{array}{llll}
f\left(x_{0}\right) & & & \\
& f\left(x_{1}\right) & & \\
& & \ddots & \\
& & & f\left(x_{2 n+1}\right)
\end{array}\right]-\lambda\left[\begin{array}{cccc}
-1 & & & \\
& 1 & & \\
& & -1 & \\
& & & \ddots
\end{array}\right]\right) C \beta
$$

$C \in \mathbb{R}^{(2 n+2) \times(n+1)}$ Cauchy matrix, $C_{k, j}=1 /\left(x_{k}-t_{j}\right)$

Step 2: find r

\rightarrow find $r=N / D \in \mathcal{R}_{n, n}$ s.t.

$$
N\left(x_{k}\right)=D\left(x_{k}\right)\left(f\left(x_{k}\right)-(-1)^{k+1} \lambda\right), \quad k=0, \ldots, 2 n+1
$$

\rightarrow matrix form

$$
C \alpha=\left(\left[\begin{array}{llll}
f\left(x_{0}\right) & & & \\
& f\left(x_{1}\right) & & \\
& & \ddots & \\
& & & f\left(x_{2 n+1}\right)
\end{array}\right]-\lambda\left[\begin{array}{cccc}
-1 & & & \\
& 1 & & \\
& & -1 & \\
& & & \ddots
\end{array}\right]\right) C \beta
$$

$C \in \mathbb{R}^{(2 n+2) \times(n+1)}$ Cauchy matrix, $C_{k, j}=1 /\left(x_{k}-t_{j}\right)$
\rightarrow generalized eigenvalue problem

$$
\left[\begin{array}{ll}
C & -F C
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]=\lambda\left[\begin{array}{ll}
0 & -S C
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]
$$

$F=\operatorname{diag}\left(f\left(x_{k}\right)\right), S=\operatorname{diag}\left((-1)^{k+1}\right)$

Step 2: find r

\rightarrow generalized eigenvalue problem

$$
\left[\begin{array}{ll}
C & -F C
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]=\lambda\left[\begin{array}{ll}
0 & -S C
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]
$$

Step 2: find r

\rightarrow generalized eigenvalue problem

$$
\left[\begin{array}{ll}
C & -F C
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]=\lambda\left[\begin{array}{ll}
0 & -S C
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]
$$

\rightarrow can transform it into a symmetric eigenvalue problem

$$
Q_{1}^{T}(S F) Q_{1} R \beta=\lambda R \beta
$$

where $\omega_{x}(x)=\prod_{k=0}^{2 n+1}\left(x-x_{k}\right), \quad \omega_{t}(x)=\prod_{j=0}^{n}\left(x-t_{j}\right)$,

$$
\Delta=\operatorname{diag}\left(\frac{\omega_{t}\left(x_{0}\right)^{2}}{\omega_{x}^{\prime}\left(x_{0}\right)}, \ldots, \frac{\omega_{t}\left(x_{2 n+1}\right)^{2}}{\omega_{x}^{\prime}\left(x_{2 n+1}\right)}\right)
$$

and $|\Delta|^{1 / 2} C=Q_{1} R$

Step 2: find r

\rightarrow generalized eigenvalue problem

$$
\left[\begin{array}{ll}
C & -F C
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]=\lambda\left[\begin{array}{ll}
0 & -S C
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]
$$

\rightarrow can transform it into a symmetric eigenvalue problem

$$
Q_{1}^{T}(S F) Q_{1} R \beta=\lambda R \beta
$$

where $\omega_{x}(x)=\prod_{k=0}^{2 n+1}\left(x-x_{k}\right), \quad \omega_{t}(x)=\prod_{j=0}^{n}\left(x-t_{j}\right)$,

$$
\Delta=\operatorname{diag}\left(\frac{\omega_{t}\left(x_{0}\right)^{2}}{\omega_{x}^{\prime}\left(x_{0}\right)}, \ldots, \frac{\omega_{t}\left(x_{2 n+1}\right)^{2}}{\omega_{x}^{\prime}\left(x_{2 n+1}\right)}\right)
$$

and $|\Delta|^{1 / 2} C=Q_{1} R$
\rightarrow well conditioned eigenvalue computation

Step 2: choice of the $\left\{t_{k}\right\}$

Step 2: choice of the $\left\{t_{k}\right\}$

\rightarrow because we perform the QR factorization of $|\Delta|^{1 / 2} C$, take $\left\{t_{k}\right\}$ to minimize

$$
\min _{\Gamma} \kappa_{2}\left(|\Delta|^{1 / 2} C \Gamma\right)
$$

Γ diagonal scaling matrix

Step 2: choice of the $\left\{t_{k}\right\}$

\rightarrow because we perform the QR factorization of $|\Delta|^{1 / 2} C$, take $\left\{t_{k}\right\}$ to minimize

$$
\min _{\Gamma} \kappa_{2}\left(|\Delta|^{1 / 2} C \Gamma\right)
$$

Γ diagonal scaling matrix
\rightarrow we show that this happens (with optimum 1) for

$$
t_{k}=x_{2 k+1}, \quad k=0, \ldots, n
$$

Step 3: next reference set

Approach:

Step 3: next reference set

Approach:

\rightarrow decompose $[a, b]$ into nondegenerate intervals

$$
\left[a, x_{0}\right],\left[x_{0}, x_{1}\right], \ldots,\left[x_{2 n}, x_{2 n+1}\right],\left[x_{2 n+1}, b\right]
$$

Step 3: next reference set

Approach:

\rightarrow decompose $[a, b]$ into nondegenerate intervals

$$
\left[a, x_{0}\right],\left[x_{0}, x_{1}\right], \ldots,\left[x_{2 n}, x_{2 n+1}\right],\left[x_{2 n+1}, b\right]
$$

\rightarrow detect singularities of $f+$ further decomp. of $[a, b]$
\rightarrow use splitting on [Pachón, Platte \& Trefethen 2010]

Step 3: next reference set

Approach:

\rightarrow decompose $[a, b]$ into nondegenerate intervals

$$
\left[a, x_{0}\right],\left[x_{0}, x_{1}\right], \ldots,\left[x_{2 n}, x_{2 n+1}\right],\left[x_{2 n+1}, b\right]
$$

\rightarrow detect singularities of $f+$ further decomp. of $[a, b]$
\rightarrow use splitting on [Pachón, Platte \& Trefethen 2010]
\rightarrow Chebyshev interpolants of $e(x)=f(x)-r(x)$ on each subinterval
\rightarrow colleague matrix root finding [Specht, Good]

Examples

DEMO

Conclusion

\rightarrow robust rational Remez algorithm (available now in Chebfun):

- adaptive barycentric representation \rightarrow eigenvalue problem with good stability
- good choice of the initial reference points (CF, AAA-Lawson, extrapolation)
- colleague matrix root finding

Conclusion

\rightarrow robust rational Remez algorithm (available now in Chebfun):

- adaptive barycentric representation \rightarrow eigenvalue problem with good stability
- good choice of the initial reference points (CF, AAA-Lawson, extrapolation)
- colleague matrix root finding
\rightarrow what I did not talk about:
- what to do in degenerate $d>0$ cases
- how do we handle $m \neq n$ problem instances

Conclusion

\rightarrow robust rational Remez algorithm (available now in Chebfun):

- adaptive barycentric representation \rightarrow eigenvalue problem with good stability
- good choice of the initial reference points (CF, AAA-Lawson, extrapolation)
- colleague matrix root finding
\rightarrow what I did not talk about:
- what to do in degenerate $d>0$ cases
- how do we handle $m \neq n$ problem instances
\rightarrow the details:
B. Beckermann, S.-I. Filip, Y. Nakatsukasa, L. N. Trefethen, Rational minimax approximation via adaptive barycentric representations, arXiv:1705.10132, under minor revision for SIAM Journal on Scientific Computing

Conclusion

\rightarrow directions for future work:

- handle weighted approximation problems (e.g., relative error)
- extensions to:
- the complex case
- bivariate approximation

Conclusion

\rightarrow directions for future work:

- handle weighted approximation problems (e.g., relative error)
- extensions to:
- the complex case
- bivariate approximation

Thank you!

