Rational minimax approximation via adaptive barycentric representations

Silviu Filip, CAIRN team, Univ Rennes, Inria, CNRS, IRISA joint work with Bernhard Beckermann, Yuji Nakatsukasa and Lloyd N. Trefethen

January 22, 2018

Rational functions

Why are they important?

 \rightarrow powerful $\ensuremath{\mathsf{approximations}}$ near singularities or on unbounded domains

Rational functions

Why are they important?

 \rightarrow powerful **approximations** near singularities or on unbounded domains

Some applications:

- elementary + special functions
- recursive filter design
- matrix exponentials & stiff PDEs
- optimal control problems

• ...

Input:
$$f \in C([a, b])$$
, target type $(m, n) \in \mathbb{N}^2$
Output: $r^* \in \mathcal{R}_{m,n} = \left\{ \frac{p}{q}, p \in \mathbb{R}_m[x], q \in \mathbb{R}_n[x] \right\}$ s.t.
 $\|f - r^*\|_{\infty}$ is minimal.

 \rightarrow denote this **minimax** error with $E_{m,n}(f)$

Input:
$$f \in \mathcal{C}([a, b])$$
, target type $(m, n) \in \mathbb{N}^2$
Output: $r^* \in \mathcal{R}_{m,n} = \left\{ \frac{p}{q}, p \in \mathbb{R}_m[x], q \in \mathbb{R}_n[x] \right\}$ s.t.
 $\|f - r^*\|_{\infty}$ is minimal.

 \rightarrow denote this **minimax** error with $E_{m,n}(f)$

 \rightarrow theoretical results:

Input:
$$f \in \mathcal{C}([a, b])$$
, target type $(m, n) \in \mathbb{N}^2$
Output: $r^* \in \mathcal{R}_{m,n} = \left\{\frac{p}{q}, p \in \mathbb{R}_m[x], q \in \mathbb{R}_n[x]\right\}$ s.t.
 $\|f - r^*\|_{\infty}$ is minimal.

 \rightarrow denote this **minimax** error with $E_{m,n}(f)$

 \rightarrow theoretical results:

• existence & unicity of r^* [de la Vallée Poussin, Walsh]

Input:
$$f \in \mathcal{C}([a, b])$$
, target type $(m, n) \in \mathbb{N}^2$
Output: $r^* \in \mathcal{R}_{m,n} = \left\{ \frac{p}{q}, p \in \mathbb{R}_m[x], q \in \mathbb{R}_n[x] \right\}$ s.t.
 $\|f - r^*\|_{\infty}$ is minimal.

 \rightarrow denote this **minimax** error with $E_{m,n}(f)$

 \rightarrow theoretical results:

- existence & unicity of r^* [de la Vallée Poussin, Walsh]
- presence of the *defect*:

 \rightarrow if $r^*=p^*/q^*$ in irreducible form, then its defect is

$$d = \min\left\{m - \deg p^*, n - \deg q^*\right\}$$

Input:
$$f \in C([a, b])$$
, target type $(m, n) \in \mathbb{N}^2$
Output: $r^* \in \mathcal{R}_{m,n} = \left\{ \frac{p}{q}, p \in \mathbb{R}_m[x], q \in \mathbb{R}_n[x] \right\}$ s.t.
 $\|f - r^*\|_{\infty}$ is minimal.

 \rightarrow denote this **minimax** error with $E_{m,n}(f)$

 \rightarrow theoretical results:

- existence & unicity of r^* [de la Vallée Poussin, Walsh]
- presence of the *defect*:

 \rightarrow if $r^* = p^*/q^*$ in irreducible form, then its defect is

$$d = \min\left\{m - \deg p^*, n - \deg q^*\right\}$$

Alternation Theorem [Achieser 1930]: → f - r* equioscillates at least m + n + 2 - d times

 \rightarrow consider best uniform approximations:

• degree 8 polynomial

 \rightarrow consider best uniform approximations:

- degree 8 polynomial
- \bullet type (4,4) rational function

 \rightarrow asymptotic behavior

$$\begin{array}{ll} E_{n,0}(f)\sim\beta/n, & \beta=0.2801... & \mbox{[Varga \& Carpenter 1985]} \\ E_{n,n}(f)\sim8e^{-\sqrt{n}}, & \mbox{[Newman 1964, Stahl 1993]} \end{array}$$

ightarrow asymptotic behavior

$$\begin{split} E_{n,0}(f) &\sim \beta/n, & \beta = 0.2801... & \text{[Varga \& Carpenter 1985]} \\ E_{n,n}(f) &\sim 8e^{-\sqrt{n}}, & \text{[Newman 1964, Stahl 1993]} \end{split}$$

 \rightarrow rational minimax approximations can be difficult to compute e.g. [Varga, Ruttan & Carpenter 1991] conjecture Stahl's result using 200-digit arithmetic for $n\leqslant80$

ightarrow asymptotic behavior

$$\begin{split} E_{n,0}(f) &\sim \beta/n, & \beta = 0.2801... & \text{[Varga \& Carpenter 1985]} \\ E_{n,n}(f) &\sim 8e^{-\sqrt{n}}, & \text{[Newman 1964, Stahl 1993]} \end{split}$$

 \rightarrow rational minimax approximations can be difficult to compute e.g. [Varga, Ruttan & Carpenter 1991] conjecture Stahl's result using 200-digit arithmetic for $n\leqslant80$

- \rightarrow **codes** (the Remez algorithm):
 - Maple: numapprox[minimax]
 - Mathematica: MinimaxApproximation

ightarrow asymptotic behavior

$$\begin{split} E_{n,0}(f) &\sim \beta/n, & \beta = 0.2801... & \text{[Varga \& Carpenter 1985]} \\ E_{n,n}(f) &\sim 8e^{-\sqrt{n}}, & \text{[Newman 1964, Stahl 1993]} \end{split}$$

 \rightarrow rational minimax approximations can be difficult to compute e.g. [Varga, Ruttan & Carpenter 1991] conjecture Stahl's result using 200-digit arithmetic for $n\leqslant80$

- \rightarrow **codes** (the Remez algorithm):
 - Maple: numapprox[minimax]
 - Mathematica: MinimaxApproximation
 - Chebfun (Matlab): minimax

 \rightarrow many different ways of representing rational functions

 \rightarrow many different ways of representing rational functions

 \rightarrow barycentric form for type (n,n) rational functions

$$r(z) = \frac{N(z)}{D(z)} = \sum_{k=0}^{n} \frac{\alpha_k}{z - t_k} \bigg/ \sum_{k=0}^{n} \frac{\beta_k}{z - t_k}$$

Notation:

- $\{\alpha_k\}, \{\beta_k\}$ barycentric coefficients
- $\{t_k\}$ support points

Why use adaptive barycentric formulas?

 \rightarrow problem dependent $\{t_k\} \Rightarrow$ well conditioned representation

Why use adaptive barycentric formulas?

 \rightarrow problem dependent $\{t_k\} \Rightarrow$ well conditioned representation

Example:

 \rightarrow the adaptive Antoulas-Anderson (AAA) algorithm [Nakatsukasa, Sète & Trefethen 2018]: greedy least squares approximation

Example: $f(x) = |x|, x \in [-1, 1]$, type (20, 20)

p/q vs N/D

Some assumptions:

- no defect $(d=0) \rightarrow$ required
- \bullet diagonal case $m=n \rightarrow$ for convenience

Some assumptions:

- no defect $(d=0) \rightarrow$ required
- $\bullet\,$ diagonal case $m=n\to$ for convenience

Step 1: choose a reference set $a \leq x_0 < \cdots < x_{2n+1} \leq b$

Some assumptions:

- no defect $(d=0) \rightarrow$ required
- \bullet diagonal case $m=n \rightarrow$ for convenience

Step 1: choose a reference set $a \leq x_0 < \cdots < x_{2n+1} \leq b$

 \rightarrow iterate the following steps until convergence:

Some assumptions:

- no defect $(d=0) \rightarrow$ required
- \bullet diagonal case $m=n \rightarrow \mbox{for convenience}$

Step 1: choose a reference set $a \leq x_0 < \cdots < x_{2n+1} \leq b$

 \rightarrow iterate the following steps until convergence:

Step 2: find $r \in \mathcal{R}_{n,n}$ and $\lambda \in \mathbb{R}$ s.t.

$$f(x_k) - r(x_k) = (-1)^{k+1}\lambda, \qquad k = 0, \dots, 2n+1$$

Some assumptions:

- no defect $(d=0) \rightarrow$ required
- \bullet diagonal case $m=n \rightarrow$ for convenience

Step 1: choose a reference set $a \leq x_0 < \cdots < x_{2n+1} \leq b$

 \rightarrow iterate the following steps until convergence:

Step 2: find $r \in \mathcal{R}_{n,n}$ and $\lambda \in \mathbb{R}$ s.t.

$$f(x_k) - r(x_k) = (-1)^{k+1}\lambda, \qquad k = 0, \dots, 2n+1$$

Step 3: among local extrema of f - r, take 2n + 2 new points

$$a \leqslant x'_0 < \dots < x'_{2n+1} \leqslant b,$$

f - r alternates in sign + at least one global extrema over [a, b] and

$$|f(x'_k) - r(x'_k)| \ge |\lambda|, \qquad k = 0, \dots, 2n+1$$

Convergence:

- \rightarrow usually quadratic [Curtis & Osborne 1966]
- \rightarrow guaranteed only if starting reference set is close enough to optimal

Convergence:

- \rightarrow usually quadratic [Curtis & Osborne 1966]
- \rightarrow guaranteed only if starting reference set is close enough to optimal

What can go wrong?

 \rightarrow no pole-free solution in Step 2

Our strategy:

• use Carathéodory-Fejér (CF) approximation [Trefethen & Gutknecht 1983]

Our strategy:

- use Carathéodory-Fejér (CF) approximation [Trefethen & Gutknecht 1983]
- AAA-Lawson approx. (adaptively re-weighted least squares AAA variant)

Our strategy:

- use Carathéodory-Fejér (CF) approximation [Trefethen & Gutknecht 1983]
- AAA-Lawson approx. (adaptively re-weighted least squares AAA variant)
- extrapolation from lower degree approx. $((2,2),(3,3),(4,4),\ldots)$

 \rightarrow find $r = N/D \in \mathcal{R}_{n,n}$ s.t.

 $N(x_k) = D(x_k)(f(x_k) - (-1)^{k+1}\lambda), \qquad k = 0, \dots, 2n+1$

$$\rightarrow$$
 find $r = N/D \in \mathcal{R}_{n,n}$ s.t.
$$N(x_k) = D(x_k)(f(x_k) - (-1)^{k+1}\lambda), \qquad k = 0, \dots, 2n+1$$

\rightarrow matrix form

$$C\alpha = \left(\begin{bmatrix} f(x_0) & & & \\ & f(x_1) & & \\ & & \ddots & \\ & & & \ddots & \\ & & & & f(x_{2n+1}) \end{bmatrix} - \lambda \begin{bmatrix} -1 & & & \\ & 1 & & \\ & & -1 & \\ & & & \ddots \end{bmatrix} \right) C\beta,$$

 $C \in \mathbb{R}^{(2n+2) \times (n+1)}$ Cauchy matrix, $C_{k,j} = 1/(x_k - t_j)$

$$ightarrow$$
 find $r = N/D \in \mathcal{R}_{n,n}$ s.t.
 $N(x_k) = D(x_k)(f(x_k) - (-1)^{k+1}\lambda), \qquad k = 0, \dots, 2n+1$

\rightarrow matrix form

$$C\alpha = \left(\begin{bmatrix} f(x_0) & & & \\ & f(x_1) & & \\ & & \ddots & \\ & & & f(x_{2n+1}) \end{bmatrix} - \lambda \begin{bmatrix} -1 & & & \\ & 1 & & \\ & & -1 & \\ & & & \ddots \end{bmatrix} \right) C\beta,$$

 $C \in \mathbb{R}^{(2n+2) imes (n+1)}$ Cauchy matrix, $C_{k,j} = 1/(x_k - t_j)$

 \rightarrow generalized eigenvalue problem

$$\begin{bmatrix} C & -FC \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \lambda \begin{bmatrix} 0 & -SC \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

 $F = \mathsf{diag}(f(x_k)), S = \mathsf{diag}((-1)^{k+1})$

 \rightarrow generalized eigenvalue problem

$$\begin{bmatrix} C & -FC \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \lambda \begin{bmatrix} 0 & -SC \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

 \rightarrow generalized eigenvalue problem

$$\begin{bmatrix} C & -FC \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \lambda \begin{bmatrix} 0 & -SC \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

 \rightarrow can transform it into a symmetric eigenvalue problem

$$Q_1^T(SF)Q_1R\beta = \lambda R\beta,$$

where $\omega_x(x) = \prod_{k=0}^{2n+1} (x - x_k), \quad \omega_t(x) = \prod_{j=0}^n (x - t_j),$
$$\Delta = \operatorname{diag}\left(\frac{\omega_t(x_0)^2}{\omega'_x(x_0)}, \dots, \frac{\omega_t(x_{2n+1})^2}{\omega'_x(x_{2n+1})}\right)$$

and $|\Delta|^{1/2}C = Q_1R$

 \rightarrow generalized eigenvalue problem

$$\begin{bmatrix} C & -FC \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \lambda \begin{bmatrix} 0 & -SC \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

 \rightarrow can transform it into a symmetric eigenvalue problem

$$Q_1^T(SF)Q_1R\beta = \lambda R\beta,$$

where $\omega_x(x) = \prod_{k=0}^{2n+1} (x - x_k), \quad \omega_t(x) = \overline{\prod_{j=0}^n (x - t_j)},$

$$\Delta = \operatorname{diag}\left(\frac{\omega_t(x_0)^2}{\omega_x'(x_0)}, \dots, \frac{\omega_t(x_{2n+1})^2}{\omega_x'(x_{2n+1})}\right)$$

and $|\Delta|^{1/2}C=Q_1R$ \rightarrow well conditioned eigenvalue computation

Step 2: choice of the $\{t_k\}$

 \to because we perform the QR factorization of $|\Delta|^{1/2}C$, take $\{t_k\}$ to minimize $\min_{\Gamma}\kappa_2(|\Delta|^{1/2}C\Gamma),$

 Γ diagonal scaling matrix

 \rightarrow because we perform the QR factorization of $|\Delta|^{1/2}C$, take $\{t_k\}$ to minimize

$$\min_{\Gamma} \kappa_2(|\Delta|^{1/2} C \Gamma),$$

 Γ diagonal scaling matrix

 \rightarrow we show that this happens (with optimum 1) for

$$t_k = x_{2k+1}, \qquad k = 0, \dots, n$$

Step 3: next reference set

Approach:

Approach:

 \rightarrow decompose [a,b] into nondegenerate intervals

 $[a, x_0], [x_0, x_1], \dots, [x_{2n}, x_{2n+1}], [x_{2n+1}, b]$

Approach:

 \rightarrow decompose [a, b] into nondegenerate intervals

 $[a, x_0], [x_0, x_1], \dots, [x_{2n}, x_{2n+1}], [x_{2n+1}, b]$

- \rightarrow detect singularities of f + further decomp. of [a,b]
- \rightarrow use splitting on [Pachón, Platte & Trefethen 2010]

Approach:

 \rightarrow decompose [a, b] into nondegenerate intervals

 $[a, x_0], [x_0, x_1], \dots, [x_{2n}, x_{2n+1}], [x_{2n+1}, b]$

- \rightarrow detect singularities of f + further decomp. of [a,b]
- \rightarrow use splitting on [Pachón, Platte & Trefethen 2010]
- \rightarrow Chebyshev interpolants of e(x) = f(x) r(x) on each subinterval
- \rightarrow colleague matrix root finding [Specht, Good]

DEMO

Conclusion

 \rightarrow robust rational Remez algorithm (available now in Chebfun):

- $\bullet\,$ adaptive barycentric representation \rightarrow eigenvalue problem with good stability
- good choice of the initial reference points (CF, AAA-Lawson, extrapolation)
- colleague matrix root finding

Conclusion

 \rightarrow robust rational Remez algorithm (available now in Chebfun):

- $\bullet\,$ adaptive barycentric representation \rightarrow eigenvalue problem with good stability
- good choice of the initial reference points (CF, AAA-Lawson, extrapolation)
- colleague matrix root finding
- \rightarrow what I did not talk about:
 - ${\ensuremath{\, \circ }}$ what to do in degenerate d>0 cases
 - \bullet how do we handle $m \neq n$ problem instances

Conclusion

 \rightarrow robust rational Remez algorithm (available now in Chebfun):

- $\bullet\,$ adaptive barycentric representation \rightarrow eigenvalue problem with good stability
- good choice of the initial reference points (CF, AAA-Lawson, extrapolation)
- colleague matrix root finding
- \rightarrow what I did not talk about:
 - $\bullet\,$ what to do in degenerate d>0 cases
 - \bullet how do we handle $m \neq n$ problem instances

\rightarrow the details:

B. Beckermann, S.-I. Filip, Y. Nakatsukasa, L. N. Trefethen, *Rational minimax* approximation via adaptive barycentric representations, arXiv:1705.10132, under minor revision for *SIAM Journal on Scientific Computing*

- \rightarrow directions for future work:
 - handle weighted approximation problems (e.g., relative error)
 - extensions to:
 - the complex case
 - bivariate approximation

- \rightarrow directions for future work:
 - handle weighted approximation problems (e.g., relative error)
 - extensions to:
 - the complex case
 - bivariate approximation

Thank you!