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Rational functions

Why are they important?

— powerful approximations near singularities or on unbounded domains
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Rational functions

Why are they important?

— powerful approximations near singularities or on unbounded domains

Some applications:

elementary + special functions

recursive filter design

°
°
@ matrix exponentials & stiff PDEs
@ optimal control problems

°
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Rational minimax approximation

Input: f € C([a,b]), target type (m,n) € N2

p

Output: " € Ry, = {q,p e R,,[z],q € R,L[:L']} s.t.

IIf = 7*|loo is minimal.

— denote this minimax error with E,, ,,(f)
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Rational minimax approximation

Input: f € C([a,b]), target type (m,n) € N2

p

Output: " € Ry, = {q,p € Rylz],q € Rn[l]} s.t.

IIf = 7*|loo is minimal.
— denote this minimax error with E,, ,,(f)

— theoretical results:

@ existence & unicity of r* [de la Vallée Poussin, Walsh]

@ presence of the defect:

— if r* = p*/q* in irreducible form, then its defect is

d = min{m — degp*,n — degq"}

e Alternation Theorem [Achieser 1930]:
— f — r* equioscillates at least m +n + 2 — d times
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A classic example: f(x) = |z|,z € [-1,1]
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A classic example: f(x) = |z|,z € [-1,1]

— consider best uniform approximations:

@ degree 8 polynomial
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A classic example: f(x) = |z|,z € [-1,1]

— consider best uniform approximations:

@ degree 8 polynomial

o type (4,4) rational function

Error curve
0.04 : :
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A classic example: f(x) = |z|,z € [-1,1]

— asymptotic behavior

Eno(f) ~ B/n, B =0.2801... [Varga & Carpenter 1985]
Epn(f) ~8e™V™, [Newman 1964, Stahl 1993]
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— rational minimax approximations can be difficult to compute
e.g. [Varga, Ruttan & Carpenter 1991] conjecture Stahl's result using 200-digit
arithmetic for n < 80

— codes (the Remez algorithm):
e Maple: numapprox [minimax]

@ Mathematica: MinimaxApproximation

@ Chebfun (Matlab): minimax
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Barycentric representations

— many different ways of representing rational functions
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Barycentric representations

— many different ways of representing rational functions

— barycentric form for type (n,n) rational functions

r(z) j Zz‘i’“ /Zztk]

Notation:
o {ay}, {8k} barycentric coefficients
o {t} support points
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Barycentric representations

Why use adaptive barycentric formulas?

— problem dependent {¢;} = well conditioned representation
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Barycentric representations

Why use adaptive barycentric formulas?
— problem dependent {¢;} = well conditioned representation
Example:

— the adaptive Antoulas-Anderson (AAA) algorithm [Nakatsukasa, Séte &
Trefethen 2018]: greedy least squares approximation
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Example: f(z) = |z|,x € [-1, 1], type (20, 20)
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The rational Remez algorithm
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Some assumptions:
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The rational Remez algorithm

Some assumptions:

@ no defect (d = 0) — required
o diagonal case m = n — for convenience

Step 1: choose a reference set a < zp < -+ < Topt1 < b
— iterate the following steps until convergence:
Step 2: find r € R,,,, and A € R s.t.

flzg) —r(zy) = (=1)FFIA, k=0,....,2n+1

Step 3: among local extrema of f — r, take 2n + 2 new points
a<xy <<, q <Db,
f —r alternates in sign + at least one global extrema over [a, ] and

[f(@h) —r(@)l = A, k=0,....2n+1
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The rational Remez algorithm

Convergence:

— usually quadratic [Curtis & Osborne 1966]
— guaranteed only if starting reference set is close enough to optimal
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The rational Remez algorithm

Convergence:

— usually quadratic [Curtis & Osborne 1966]
— guaranteed only if starting reference set is close enough to optimal

What can go wrong?

— no pole-free solution in Step 2
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Step 1: initial reference set

— need suff. good initial guess for {x}
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Step 1: initial reference set

— need suff. good initial guess for {x}

Our strategy:
o use Carathéodory-Fejér (CF) approximation [Trefethen & Gutknecht 1983]
o AAA-Lawson approx. (adaptively re-weighted least squares AAA variant)
@ extrapolation from lower degree approx. ((2,2),(3,3), (4,4),...)
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Step 2: find r
— find r = N/D € R, ,, s.t.

N(zi) = D(x)(f(z) — (DN, k=0,....2n+1
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Step 2: find r
— find r = N/D € R, ,, s.t.

N(z1) = D(x)(f(z1) — (=1)FFIN), k=0,....2n+1

— matrix form

f($2n+1)

C € RCn+2)x(n+1) Cauchy matrix, Cy j = 1/(xx — t;)
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Step 2: find r
— find r = N/D € R, ,, s.t.

N(zi) = D(x)(f(z) — (DN, k=0,....2n+1

— matrix form

f($2n+1)

C € RCn+2)x(n+1) Cauchy matrix, Cy j = 1/(xx — t;)

— generalized eigenvalue problem

(e )

F = diag(f (1)), 5 = diag((—1)**1)
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Step 2: find r

— generalized eigenvalue problem

(e )
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Step 2: find r

— generalized eigenvalue problem

e -rarff]-»0 saff] |

— can transform it into a symmetric eigenvalue problem

[ QT (SF)Q.RB = RS, ]

where w,(z) = iigl(x —xp), wir)= H?:o(x —tj),
A = diag (wt(%)z L wt(”"“)z)
w! (z9) wh (T2n41)

and |A]'Y2C = QR
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Step 2: find r

— generalized eigenvalue problem
al _ @
[ (¢ —FC] M —A[0 —SC] M ]

— can transform it into a symmetric eigenvalue problem

[ QT (SF)Q.RB = RS, ]

where w,(z) = iigl(x —ax), wi(w) =[Ti_o(x —t;),
A = diag (wt(%)z L wt(”"“)z)
wi (o) wi (T2n41)

and |A]'Y2C = QR
— well conditioned eigenvalue computation
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Step 2: choice of the {t;}
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Step 2: choice of the {t;}

— because we perform the QR factorization of |A|'/2C, take {t;} to minimize

min ko (JA|Y2CT),

I" diagonal scaling matrix
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Step 2: choice of the {t;}

— because we perform the QR factorization of |A|'/2C, take {t;} to minimize
mrin@(mp/ﬂcr),
I" diagonal scaling matrix

— we show that this happens (with optimum 1) for

tk:'er-‘rla k:O7"'7n
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Step 3: next reference set

Approach:
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Step 3: next reference set

Approach:
— decompose [a, b] into nondegenerate intervals

[a, 170}7 [1‘0, Il], B [-7027“ I2n+1], [l‘2n,+17 b}
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Step 3: next reference set

Approach:
— decompose [a, b] into nondegenerate intervals
[a, zo], [To, 1], - - -, [T2n, Tant1], [T2n+1, 0]

— detect singularities of f + further decomp. of [a, b]

— use splitting on [Pachén, Platte & Trefethen 2010]
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Step 3: next reference set

Approach:
— decompose [a, b] into nondegenerate intervals
[a, To], [T0, T1], - - -, [T2n, Tan+1], [T2n+1, 0]
— detect singularities of f + further decomp. of [a, b]
— use splitting on [Pachén, Platte & Trefethen 2010]

— Chebyshev interpolants of e(x) = f(x) — r(x) on each subinterval

— colleague matrix root finding [Specht, Good)|
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Examples

DEMO
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Conclusion

— robust rational Remez algorithm (available now in Chebfun):

@ adaptive barycentric representation — eigenvalue problem with good stability
@ good choice of the initial reference points (CF, AAA-Lawson, extrapolation)

@ colleague matrix root finding
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Conclusion

— robust rational Remez algorithm (available now in Chebfun):

@ adaptive barycentric representation — eigenvalue problem with good stability
@ good choice of the initial reference points (CF, AAA-Lawson, extrapolation)

@ colleague matrix root finding

— what | did not talk about:
@ what to do in degenerate d > 0 cases

@ how do we handle m # n problem instances

— the details:

B. Beckermann, S.-I. Filip, Y. Nakatsukasa, L. N. Trefethen, Rational minimax
approximation via adaptive barycentric representations, arXiv:1705.10132, under
minor revision for SIAM Journal on Scientific Computing
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Conclusion

— directions for future work:

@ handle weighted approximation problems (e.g., relative error)
@ extensions to:

e the complex case
e bivariate approximation
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Conclusion

— directions for future work:

@ handle weighted approximation problems (e.g., relative error)
@ extensions to:

e the complex case
e bivariate approximation

Thank you!
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