PROJECTION OF ANALYTIC SURFACES

S. Diatta, G. Moroz and M. Pouget

S. Diatta, G. Moroz and M. Pouget

PROJECTION OF ANALYTIC SURFACES

Description

- $F, G: \mathbb{R}^4 \to \mathbb{R}$ two real analytic functions
- $\mathcal{M} = \{q \in \mathbb{R}^4 | F(q) = G(q) = 0\}$ be a smooth surface
- $\mathfrak{p}:\mathbb{R}^4
 ightarrow\mathbb{R}^3$, $(x,y,z,t)\mapsto(x,y,z)$
- $\Omega = \mathfrak{p}(\mathcal{M})$ can be a singular surface
- $\Omega = \Omega_{reg} \cup \Omega_{sing}$

Contribution: Graph of singularities of $\Omega(\Omega_{sing})$ **Future work:** Compute a triangulation isotopic to Ω .

JNCF January 22, 2017 2 / 26

Outline

Motivation and Approach

2 Types of singularity

- Generic singularities
- Characterization with regular systems

3 Sub-algorithms

4 Topology of singularities

Motivation in Robotic

- 2RPR RR: parallel mechanism
- ρ_1 fixed
- Articular variables: ρ_2, ρ_3
- Pose variables: θ_1, α
- E_W is a smooth variety of dimension 2 contained in a 4-dimensional space.

The projection of E_W along one direction provides a visualization

Outline

1 Motivation and Approach

2 Types of singularity

- Generic singularities
- Characterization with regular systems

3 Sub-algorithms

Topology of singularities

About classification of singularities

In mathematics the are several results about the germs of maps: [Whit44], [Whit55], [Math69], [Arno81], [Mond83], [Gor84], [Rieg86], [MaTa96] ...

but, there is less work about multi-germs maps:

- **[Gor96]** Victor V. Goryunov : *Local invariants of mappings of surfaces into three-space*
- **[HK01]** C. A. Hobbs and N. P. Kirk: On the classification and bifurcation of multigerms of maps from surfaces to 3-space.

double-point

[Gor96] Victor V. Goryunov: *Local invariants of mappings of surfaces into three-space.*

Intia Im Q JNCF January 22, 2017

double-point

[Gor96] Victor V. Goryunov: *Local invariants of mappings of surfaces into three-space.*

Insta Im D JNCF January 22, 2017

double-point

[Gor96] Victor V. Goryunov: *Local invariants of mappings of surfaces into three-space.*

[Gor96] Victor V. Goryunov: *Local invariants of mappings of surfaces into three-space.*

[Gor96] Victor V. Goryunov: *Local invariants of mappings of surfaces into three-space.*

[Gor96] Victor V. Goryunov: *Local invariants of mappings of surfaces into three-space.*

[Gor96] Victor V. Goryunov: *Local invariants of mappings of surfaces into three-space.*

cross-cap

[Gor,96] Victor V. Goryunov: *Local invariants of mappings of surfaces into three-space.*

Insta- 00 JNCF January 22, 2017

Assumptions

Different types of singularities of $\mathfrak{p}(\mathcal{M})$ with their preimages

Assumptions

Different types of singularities of $\mathfrak{p}(\mathcal{M})$ with their preimages

curve of double-points

S. Diatta, G. Moroz and M. Pouget

PROJECTION OF ANALYTIC SURFACES

12 / 26

Insta- 0

cross-cap

$$(S_{cross}) \begin{cases} F(x, y, z, t) = 0\\ G(x, y, z, t) = 0\\ \partial_t F(x, y, z, t) = 0\\ \partial_t G(x, y, z, t) = 0 \end{cases}$$

Ínta 🔤 🕔 JNCF January 22, 2017

S. Diatta, G. Moroz and M. Pouget

PROJECTION OF ANALYTIC SURFACES

Assumptions

- (i) \mathcal{M} is smooth;
- (ii) $P \in \Omega$ has at most three pre-images;
- (iii) If $P \in \Omega$ has three pre-images, then all of them are regular;
- (iv) The tangent plans have complete intersection.

Theorem (Dimensions)

The set of solutions of (S_{double}) is 1-dimensional and the set of solutions of (S_{triple}) and (S_{cross}) are each of them 0-dimensional.

Theorem (Regularity)

The systems (S_{double}) , (S_{triple}) and (S_{cross}) are regular if the above assumptions are satisfied.

Remark

 $(S_{{\sf double}})$ becomes non regular when $t_1=t_2$.

Assumptions

- (i) \mathcal{M} is smooth;
- (ii) $P \in \Omega$ has at most three pre-images;
- (iii) If $P \in \Omega$ has three pre-images, then all of them are regular;
- (iv) The tangent plans have complete intersection.

Theorem (Dimensions)

The set of solutions of (S_{double}) is 1-dimensional and the set of solutions of (S_{triple}) and (S_{cross}) are each of them 0-dimensional.

Theorem (Regularity)

The systems (S_{double}) , (S_{triple}) and (S_{cross}) are regular if the above assumptions are satisfied.

Remark

 $(S_{{\sf double}})$ becomes non regular when $t_1=t_2$.

Assumptions

- (i) \mathcal{M} is smooth;
- (ii) $P \in \Omega$ has at most three pre-images;
- (iii) If $P \in \Omega$ has three pre-images, then all of them are regular;
- (iv) The tangent plans have complete intersection.

Theorem (Dimensions)

The set of solutions of (S_{double}) is 1-dimensional and the set of solutions of (S_{triple}) and (S_{cross}) are each of them 0-dimensional.

Theorem (Regularity)

The systems (S_{double}) , (S_{triple}) and (S_{cross}) are regular if the above assumptions are satisfied.

Remark

 (S_{double}) becomes non regular when $t_1 = t_2$.

Assumptions

- (i) \mathcal{M} is smooth;
- (ii) $P \in \Omega$ has at most three pre-images;
- (iii) If $P \in \Omega$ has three pre-images, then all of them are regular;
- (iv) The tangent plans have complete intersection.

Theorem (Dimensions)

The set of solutions of (S_{double}) is 1-dimensional and the set of solutions of (S_{triple}) and (S_{cross}) are each of them 0-dimensional.

Theorem (Regularity)

The systems (S_{double}) , (S_{triple}) and (S_{cross}) are regular if the above assumptions are satisfied.

Remark

 (S_{double}) becomes non regular when $t_1 = t_2$.

curve of double-points

$$(S_{double}) \begin{cases} F(x, y, z, t_1) = 0 \\ G(x, y, z, t_1) = 0 \\ F(x, y, z, t_2) = 0 \\ G(x, y, z, t_2) = 0 \\ \text{with } t_1 \neq t_2 \end{cases}$$

Ball system

We consider the following change of variables:

Inita Im U JNCF January 22, 2017

$$(S_{ball})_{r>0} \begin{cases} \frac{1}{2}(F(x,y,z,c+\sqrt{r})+F(x,y,z,c-\sqrt{r}))=0\\ \frac{1}{2}(G(x,y,z,c+\sqrt{r})+G(x,y,z,c-\sqrt{r}))=0\\ \frac{1}{2\sqrt{r}}(F(x,y,z,c+\sqrt{r})-F(x,y,z,c-\sqrt{r}))=0\\ \frac{1}{2\sqrt{r}}(G(x,y,z,c+\sqrt{r})-G(x,y,z,c-\sqrt{r}))=0 \end{cases}$$

$$(S_{ball})_{r=0} \begin{cases} F(x, y, z, c) = 0\\ G(x, y, z, c) = 0\\ \partial_t F(x, y, z, c) = 0\\ \partial_t G(x, y, z, c) = 0 \end{cases}$$

 $\pi: \mathbb{R}^5 \longrightarrow \mathbb{R}^3$

Lemma

•
$$\pi(Sol_{ball}) = \mathfrak{p}(Sol_{double}) \cup \mathfrak{p}(Sol_{cross})$$

 (S_{ball}) is regular if the assumptions are satisfied

$$(S_{ball})_{r>0} \begin{cases} \frac{1}{2}(F(x,y,z,c+\sqrt{r})+F(x,y,z,c-\sqrt{r}))=0\\ \frac{1}{2}(G(x,y,z,c+\sqrt{r})+G(x,y,z,c-\sqrt{r}))=0\\ \frac{1}{2\sqrt{r}}(F(x,y,z,c+\sqrt{r})-F(x,y,z,c-\sqrt{r}))=0\\ \frac{1}{2\sqrt{r}}(G(x,y,z,c+\sqrt{r})-G(x,y,z,c-\sqrt{r}))=0 \end{cases}$$

$$(S_{ball})_{r=0} \begin{cases} F(x, y, z, c) = 0\\ G(x, y, z, c) = 0\\ \partial_t F(x, y, z, c) = 0\\ \partial_t G(x, y, z, c) = 0 \end{cases}$$

 $\pi:\mathbb{R}^{5}\longrightarrow\mathbb{R}^{3}$

Lemma

Outline

1 Motivation and Approach

2 Types of singularity

- Generic singularities
- Characterization with regular systems

3 Sub-algorithms

4 Topology of singularities

Interval Newton Method

Let

- $\mathcal{F}: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ be a C^1 function;
- X be a product of intervals in \mathbb{R}^n and $q_0 \in X$;
- $J_{\mathcal{F}(X)}$ be the Jacobian matrix of \mathcal{F} in X;
- $[J_{\mathcal{F}(X)}]$ the interval enclosure of $J_{\mathcal{F}(X)}$.

Interval Newton operator is defined by:

$$N(q_0, X) = q_0 - [J_{\mathcal{F}(X)}]^{-1} \mathcal{F}(q_0).$$

Existence and uniqueness of solution

- If $N(q_0, X) \subset X$, then $\exists ! q' \in X$ such that F(q') = 0.
- ${ig 0}$ If $q''\in X$ and ${\mathcal F}(q'')=0$, then $q''\in N(q_0,X).$
- ③ If $N(q_0, X) \cap X = \emptyset$, then $\mathcal{F}(q) \neq 0$ for all $q \in X$.

Interval Newton Method

Let

- $\mathcal{F}: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ be a C^1 function;
- X be a product of intervals in \mathbb{R}^n and $q_0 \in X$;
- $J_{\mathcal{F}(X)}$ be the Jacobian matrix of \mathcal{F} in X;
- $[J_{\mathcal{F}(X)}]$ the interval enclosure of $J_{\mathcal{F}(X)}$.

Interval Newton operator is defined by:

$$N(q_0, X) = q_0 - [J_{\mathcal{F}(X)}]^{-1} \mathcal{F}(q_0).$$

Existence and uniqueness of solution

- If $N(q_0, X) \subset X$, then $\exists ! q' \in X$ such that F(q') = 0.
- 3 If $q'' \in X$ and $\mathcal{F}(q'') = 0$, then $q'' \in N(q_0, X)$.
- $If N(q_0, X) \cap X = \emptyset, then \mathcal{F}(q) \neq 0 for all q \in X.$

- Input: (S, X_0) with $X_0 \subset \mathbb{R}^n$
- Output: A set X^{sol} of isolating boxes pairwise disjoint

- Input: (S, X_0) with $X_0 \subset \mathbb{R}^n$
- Output: A set X^{sol} of isolating boxes pairwise disjoint

- Input: (S, X_0) with $X_0 \subset \mathbb{R}^n$
- Output: A set X^{sol} of isolating boxes pairwise disjoint

- Input: (S, X_0) with $X_0 \subset \mathbb{R}^n$
- Output: A set X^{sol} of isolating boxes pairwise disjoint

C Beltràn and A Leykin [2012], B Martin A Goldsztejn L Granvilliers and C Jermann [2013], J V D Hoeven [2015]

Curve Tracking Reliable **algorithm**: Compute a sequence of *n*-dimensional parallelotopes enclosing of a given connected component.

- Input: Initial point
- Output: A set of adjacent parallelotopes enclosing each connected component

C Beltràn and A Leykin [2012], B Martin A Goldsztejn L Granvilliers and C Jermann [2013], J V D Hoeven [2015]

Curve Tracking Reliable **algorithm**: Compute a sequence of *n*-dimensional parallelotopes enclosing of a given connected component.

- Input: Initial point
- Output: A set of adjacent parallelotopes enclosing each connected component

C Beltràn and A Leykin [2012], B Martin A Goldsztejn L Granvilliers and C Jermann [2013], J V D Hoeven [2015]

Curve Tracking Reliable **algorithm**: Compute a sequence of *n*-dimensional parallelotopes enclosing of a given connected component.

- Input: Initial point
- Output: A set of adjacent parallelotopes enclosing each connected component

Outline

1 Motivation and Approach

2 Types of singularity

- Generic singularities
- Characterization with regular systems

3 Sub-algorithms

Topology of singularities

Enclose special points of Ω_{sing}

- x-critical points: IsolatBoxes $((S_{ball})', X_0)$ provided a set of boxes in \mathbb{R}^5 ,
- IsolatBoxes $((S_{triple}), X_0)$ provided a set of boxes in \mathbb{R}^6 ,
- $\texttt{IsolatBoxes}((S_{cross}), X_0)$ provided a set of boxes in \mathbb{R}^4 and
- boundary points.

Enclose special points of Ω_{sing}

- x-critical points: IsolatBoxes $((S_{ball})', X_0)$ provided a set of boxes in \mathbb{R}^5 ,
- IsolatBoxes $((S_{triple}), X_0)$ provided a set of boxes in \mathbb{R}^6 ,
- IsolatBoxes $((S_{cross}), X_0)$ provided a set of boxes in \mathbb{R}^4 and
- boundary points.

Compute witness boxes

B is called *witness* box if it satisfied the following conditions:

- *B* is the projection in \mathbb{R}^3 of a isolating box
- Ø B doesn't contain any x-critical point
- $B \cap \mathfrak{p}(X_i) = \emptyset$, with X_i is an isolating box

Compute a set of parallelotopes that enclose each connected component

- Find at least one point on each connected component: *x*-critical point, boundary point, cross-cap
- start the path tracking at these point

Intia Im U JNCF January 22, 2017

Compute a set of parallelotopes that enclose each connected component

- Find at least one point on each connected component: *x*-critical point, boundary point, cross-cap
- start the path tracking at these point

Compute a set of parallelotopes that enclose each connected component

- Find at least one point on each connected component: *x*-critical point, boundary point, cross-cap
- start the path tracking at these point

Compute a set of parallelotopes that enclose each connected component

- Find at least one point on each connected component: *x*-critical point, boundary point, cross-cap
- start the path tracking at these point

THANK YOU!

S. Diatta, G. Moroz and M. Pouget

PROJECTION OF ANALYTIC SURFACES