PROJECTION OF ANALYTIC SURFACES

S. Diatta, G. Moroz and M. Pouget

Description

- $F, G: \mathbb{R}^{4} \rightarrow \mathbb{R}$ two real analytic functions
- $\mathcal{M}=\left\{q \in \mathbb{R}^{4} \mid F(q)=G(q)=0\right\}$ be a smooth surface
- $\mathfrak{p}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3},(x, y, z, t) \mapsto(x, y, z)$
- $\Omega=\mathfrak{p}(\mathcal{M})$ can be a singular surface
- $\Omega=\Omega_{\text {reg }} \cup \Omega_{\text {sing }}$

Contribution: Graph of singularities of $\Omega\left(\Omega_{\text {sing }}\right)$ Future work: Compute a triangulation isotopic to Ω.

JNCF January 22, 2017

Outline

(1) Motivation and Approach
(2) Types of singularity

- Generic singularities
- Characterization with regular systems
(3) Sub-algorithms
(4) Topology of singularities

JNCF January 22, 2017

Motivation in Robotic

- $2 R P R-R R$: parallel mechanism
- ρ_{1} fixed
- Articular variables: ρ_{2}, ρ_{3}
- Pose variables: θ_{1}, α
E_{W} is a smooth variety of dimension 2 contained in a 4-dimensional space.

The projection of E_{W} along one direction provides a
 visualization

Outline

(1) Motivation and Approach

(2) Types of singularity

- Generic singularities
- Characterization with regular systems

About classification of singularities

In mathematics the are several results about the germs of maps: [Whit44], [Whit55], [Math69], [Arno81], [Mond83], [Gor84], [Rieg86], [MaTa96] ...
but, there is less work about multi-germs maps:

- [Gor96] Victor V. Goryunov : Local invariants of mappings of surfaces into three-space
- [HK01] C. A. Hobbs and N. P. Kirk: On the classification and bifurcation of multigerms of maps from surfaces to 3-space.

JNCF January 22, 2017

double-point

[Gor96] Victor V. Goryunov: Local invariants of mappings of surfaces into three-space.

15

double－point

［Gor96］Victor V．Goryunov：Local invariants of mappings of surfaces into three－space．

にびam Lor
（1）

double-point

[Gor96] Victor V. Goryunov: Local invariants of mappings of surfaces into three-space.

15
JNCF January 22, 2017

triple-point

[Gor96] Victor V. Goryunov: Local invariants of mappings of surfaces into three-space.

$$
T_{q_{3}} \mathcal{M}
$$

$T_{q_{2}} \mathcal{M}$

$T_{q_{1}} \mathcal{M}$

(1)

triple-point

[Gor96] Victor V. Goryunov: Local invariants of mappings of surfaces into three-space.

$$
T_{q_{3}} \mathcal{M}
$$

$$
T_{q_{2}} \mathcal{M}
$$

$T_{q_{1}} \mathcal{M}$

(1)

triple-point

[Gor96] Victor V. Goryunov: Local invariants of mappings of surfaces into three-space.

$$
T_{q_{3}} \mathcal{M}
$$

$T_{q_{2}} \mathcal{M}$

$T_{q_{1}} \mathcal{M}$

triple-point

[Gor96] Victor V. Goryunov: Local invariants of mappings of surfaces into three-space.

cross-cap

[Gor,96] Victor V. Goryunov: Local invariants of mappings of surfaces into three-space.

Assumptions

Different types of singularities of $\mathfrak{p}(\mathcal{M})$ with their preimages

Assumptions

Different types of singularities of $\mathfrak{p}(\mathcal{M})$ with their preimages

curve of double-points

$\left(S_{\text {double }}\right)\left\{\begin{array}{c}F\left(x, y, z, t_{1}\right)=0 \\ G\left(x, y, z, t_{1}\right)=0 \\ F\left(x, y, z, t_{2}\right)=0 \\ G\left(x, y, z, t_{2}\right)=0 \\ \text { with } t t_{1} \neq t_{2}\end{array}\right.$

JNCF

triple-point

$$
T_{q_{3}} \mathcal{M}
$$

$T_{q_{2}} \mathcal{M}$
$\left(S_{\text {triple }}\right)\left\{\begin{array}{l}F\left(x, y, z, t_{1}\right)=0 \\ G\left(x, y, z, t_{1}\right)=0 \\ F\left(x, y, z, t_{2}\right)=0 \\ G\left(x, y, z, t_{2}\right)=0 \\ F\left(x, y, z, t_{3}\right)=0 \\ G\left(x, y, z, t_{3}\right)=0 \\ t_{i} \neq t_{j} \text { when } i \neq j\end{array} \quad T_{q_{1} \mathcal{M}}\right.$

cross-cap

$\left(S_{\text {cross }}\right)\left\{\begin{array}{c}F(x, y, z, t)=0 \\ G(x, y, z, t)=0 \\ \partial_{t} F(x, y, z, t)=0 \\ \partial_{t} G(x, y, z, t)=0\end{array}\right.$

Results

Assumptions

(i) \mathcal{M} is smooth;
(ii) $P \in \Omega$ has at most three pre-images;
(iii) If $P \in \Omega$ has three pre-images, then all of them are regular; (iv) The tangent plans have complete intersection.

Theorem (Dimensions)
The set of solutions of ($S_{\text {double }}$) is 1-dimensional and the set of solutions of $\left(S_{\text {triple }}\right)$ and ($\left.S_{\text {cross }}\right)$ are each of them 0-dimensional.

Theorem (Regularity) The systems ($S_{\text {double }}$). ($S_{\text {trinle }}$) and ($S_{\text {cross }}$) are regular if the above assumptions are satisfied.

Results

Assumptions

(i) \mathcal{M} is smooth;
(ii) $P \in \Omega$ has at most three pre-images;
(iii) If $P \in \Omega$ has three pre-images, then all of them are regular;
(iv) The tangent plans have complete intersection.

Theorem (Dimensions)

The set of solutions of ($S_{\text {double }}$) is 1-dimensional and the set of solutions of $\left(S_{\text {triple }}\right)$ and $\left(S_{\text {cross }}\right)$ are each of them 0 -dimensional.

Results

Assumptions

(i) \mathcal{M} is smooth;
(ii) $P \in \Omega$ has at most three pre-images;
(iii) If $P \in \Omega$ has three pre-images, then all of them are regular;
(iv) The tangent plans have complete intersection.

Theorem (Dimensions)

The set of solutions of ($S_{\text {double }}$) is 1-dimensional and the set of solutions of ($S_{\text {triple }}$) and ($S_{\text {cross }}$) are each of them 0-dimensional.

Theorem (Regularity)

The systems ($S_{\text {double }}$), ($S_{\text {triple }}$) and ($S_{\text {cross }}$) are regular if the above assumptions are satisfied.

Results

Assumptions

(i) \mathcal{M} is smooth;
(ii) $P \in \Omega$ has at most three pre-images;
(iii) If $P \in \Omega$ has three pre-images, then all of them are regular;
(iv) The tangent plans have complete intersection.

Theorem (Dimensions)

The set of solutions of ($S_{\text {double }}$) is 1-dimensional and the set of solutions of $\left(S_{\text {triple }}\right)$ and $\left(S_{\text {cross }}\right)$ are each of them 0 -dimensional.

Theorem (Regularity)

The systems ($S_{\text {double }}$), ($S_{\text {triple }}$) and ($S_{\text {cross }}$) are regular if the above assumptions are satisfied.

```
Remark
( \(S_{\text {double }}\) ) becomes non regular when \(t_{1}=t_{2}\).
```


curve of double-points

$$
\left(S_{\text {double }}\right)\left\{\begin{array}{c}
F\left(x, y, z, t_{1}\right)=0 \\
G\left(x, y, z, t_{1}\right)=0 \\
F\left(x, y, z, t_{2}\right)=0 \\
G\left(x, y, z, t_{2}\right)=0 \\
\text { with } t_{1} \neq t_{2}
\end{array}\right.
$$

Ball system

We consider the following change of variables：
－For any two points $q_{1}=\left(x, y, z, t_{1}\right)$ and $q_{2}=\left(x, y, z, t_{2}\right)$ on \mathcal{M} ，
－$c=\frac{t_{1}+t_{2}}{2}$ and $r=a^{2}$

にびam Lor
（1）

$$
\left(S_{b a l l}\right)_{r>0}\left\{\begin{array}{c}
\frac{1}{2}(F(x, y, z, c+\sqrt{r})+F(x, y, z, c-\sqrt{r}))=0 \\
\frac{1}{2}(G(x, y, z, c+\sqrt{r})+G(x, y, z, c-\sqrt{r}))=0 \\
\frac{1}{2 \sqrt{r}}(F(x, y, z, c+\sqrt{r})-F(x, y, z, c-\sqrt{r}))=0 \\
\frac{1}{2 \sqrt{r}}(G(x, y, z, c+\sqrt{r})-G(x, y, z, c-\sqrt{r}))=0
\end{array}\right.
$$

$$
\left(S_{b a l l}\right)_{r=0}\left\{\begin{array}{c}
F(x, y, z, c)=0 \\
G(x, y, z, c)=0 \\
\partial_{t} F(x, y, z, c)=0 \\
\partial_{t} G(x, y, z, c)=0
\end{array}\right.
$$

$$
\left(S_{b a l l}\right)_{r>0}\left\{\begin{array}{c}
\frac{1}{2}(F(x, y, z, c+\sqrt{r})+F(x, y, z, c-\sqrt{r}))=0 \\
\frac{1}{2}(G(x, y, z, c+\sqrt{r})+G(x, y, z, c-\sqrt{r}))=0 \\
\frac{1}{2 \sqrt{r}}(F(x, y, z, c+\sqrt{r})-F(x, y, z, c-\sqrt{r}))=0 \\
\frac{1}{2 \sqrt{r}}(G(x, y, z, c+\sqrt{r})-G(x, y, z, c-\sqrt{r}))=0
\end{array}\right.
$$

$$
\left(S_{b a l l}\right)_{r=0}\left\{\begin{array}{c}
F(x, y, z, c)=0 \\
G(x, y, z, c)=0 \\
\partial_{t} F(x, y, z, c)=0 \\
\partial_{t} G(x, y, z, c)=0
\end{array}\right.
$$

$\pi: \mathbb{R}^{5} \longrightarrow \mathbb{R}^{3}$

Lemma

(1) $\pi\left(\right.$ Sol $\left._{\text {ball }}\right)=\mathfrak{p}\left(\right.$ Sol $\left._{\text {double }}\right) \cup \mathfrak{p}\left(\right.$ Sol $\left._{\text {cross }}\right)$
(2) $\left(S_{\text {ball }}\right)$ is regular if the assumptions are satisfied

Outline

(1) Motivation and Approach
(2) Types of singularity

- Generic singularities
- Characterization with regular systems
(3) Sub-algorithms

4 Topology of singularities

Interval Newton Method

Let

- $\mathcal{F}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ be a C^{1} function;
- X be a product of intervals in \mathbb{R}^{n} and $q_{0} \in X$;
- $J_{\mathcal{F}(X)}$ be the Jacobian matrix of \mathcal{F} in X;
- $\left[J_{\mathcal{F}(X)}\right]$ the interval enclosure of $J_{\mathcal{F}(X)}$.

Interval Newton operator is defined by:

$$
N\left(q_{0}, X\right)=q_{0}-\left[J_{\mathcal{F}(X)}\right]^{-1} \mathcal{F}\left(q_{0}\right) .
$$

Interval Newton Method

Let

- $\mathcal{F}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ be a C^{1} function;
- X be a product of intervals in \mathbb{R}^{n} and $q_{0} \in X$;
- $J_{\mathcal{F}(X)}$ be the Jacobian matrix of \mathcal{F} in X;
- $\left[J_{\mathcal{F}(X)}\right]$ the interval enclosure of $J_{\mathcal{F}(X)}$.

Interval Newton operator is defined by:

$$
N\left(q_{0}, X\right)=q_{0}-\left[J_{\mathcal{F}(X)}\right]^{-1} \mathcal{F}\left(q_{0}\right) .
$$

Existence and uniqueness of solution

(1) If $N\left(q_{0}, X\right) \subset X$, then $\exists!q^{\prime} \in X$ such that $F\left(q^{\prime}\right)=0$.
(2) If $q^{\prime \prime} \in X$ and $\mathcal{F}\left(q^{\prime \prime}\right)=0$, then $q^{\prime \prime} \in N\left(q_{0}, X\right)$.
(3) If $N\left(q_{0}, X\right) \cap X=\emptyset$, then $\mathcal{F}(q) \neq 0$ for all $q \in X$.

Sub-algorithms

[Neu90] A. Neumaier: Interval methods for systems of equations.
IsolatBoxes algorithm: Isolating boxes for a regular 0-dimensional system

- Input: $\left(S, X_{0}\right)$ with $X_{0} \subset \mathbb{R}^{n}$
- Output: A set $X^{\text {sol }}$ of isolating boxes pairwise disjoint

JNCF January 22, 2017

Sub-algorithms

[Neu90] A. Neumaier: Interval methods for systems of equations.
IsolatBoxes algorithm: Isolating boxes for a regular 0-dimensional system

- Input: $\left(S, X_{0}\right)$ with $X_{0} \subset \mathbb{R}^{n}$
- Output: A set $X^{\text {sol }}$ of isolating boxes pairwise disjoint

JNCF January 22, 2017

Sub-algorithms

[Neu90] A. Neumaier: Interval methods for systems of equations.
IsolatBoxes algorithm: Isolating boxes for a regular 0-dimensional system

- Input: $\left(S, X_{0}\right)$ with $X_{0} \subset \mathbb{R}^{n}$
- Output: A set $X^{\text {sol }}$ of isolating boxes pairwise disjoint

Sub-algorithms

[Neu90] A. Neumaier: Interval methods for systems of equations.
IsolatBoxes algorithm: Isolating boxes for a regular 0-dimensional system

- Input: $\left(S, X_{0}\right)$ with $X_{0} \subset \mathbb{R}^{n}$
- Output: A set $X^{\text {sol }}$ of isolating boxes pairwise disjoint

Sub-algorithms

C Beltràn and A Leykin [2012], B Martin A Goldsztejn L Granvilliers and C Jermann [2013], J V D Hoeven [2015]
Curve Tracking Reliable algorithm: Compute a sequence of n-dimensional parallelotopes enclosing of a given connected component.

- Input: Initial point
- Output: A set of adjacent parallelotopes enclosing each connected component

JNCF January 22, 2017

Sub-algorithms

C Beltràn and A Leykin [2012], B Martin A Goldsztejn L Granvilliers and C Jermann [2013], J V D Hoeven [2015]
Curve Tracking Reliable algorithm: Compute a sequence of n-dimensional parallelotopes enclosing of a given connected component.

- Input: Initial point
- Output: A set of adjacent parallelotopes enclosing each connected component

Sub-algorithms

C Beltràn and A Leykin [2012], B Martin A Goldsztejn L Granvilliers and C Jermann [2013], J V D Hoeven [2015]
Curve Tracking Reliable algorithm: Compute a sequence of n-dimensional parallelotopes enclosing of a given connected component.

- Input: Initial point
- Output: A set of adjacent parallelotopes enclosing each connected component

Outline

(1) Motivation and Approach
(2) Types of singularity

- Generic singularities
- Characterization with regular systems
(3) Sub-algorithms
(4) Topology of singularities
(1)
S. Diatta, G. Moroz and M. Pouget

Enclose special points of $\Omega_{\text {sing }}$

- x-critical points: IsolatBoxes $\left(\left(S_{\text {ball }}\right)^{\prime}, X_{0}\right)$ provided a set of boxes in \mathbb{R}^{5},
- IsolatBoxes $\left(\left(S_{\text {triple }}\right), X_{0}\right)$ provided a set of boxes in \mathbb{R}^{6},
- IsolatBoxes $\left(\left(S_{\text {cross }}\right), X_{0}\right)$ provided a set of boxes in \mathbb{R}^{4} and
- boundary points.

(1)

Enclose special points of $\Omega_{\text {sing }}$

- x-critical points: IsolatBoxes $\left(\left(S_{\text {ball }}\right)^{\prime}, X_{0}\right)$ provided a set of boxes in \mathbb{R}^{5},
- IsolatBoxes $\left(\left(S_{\text {triple }}\right), X_{0}\right)$ provided a set of boxes in \mathbb{R}^{6},
- IsolatBoxes $\left(\left(S_{\text {cross }}\right), X_{0}\right)$ provided a set of boxes in \mathbb{R}^{4} and
- boundary points.

(1)

Isolated box given by IsolateSols algorithm

Compute witness boxes

B is called witness box if it satisfied the following conditions:
(1) B is the projection in \mathbb{R}^{3} of a isolating box
(2) B doesn't contain any x-critical point
(3) $B \cap \mathfrak{p}\left(X_{i}\right)=\emptyset$, with X_{i} is an isolating box

Path tracking

Compute a set of parallelotopes that enclose each connected component

- Find at least one point on each connected component: x-critical point, boundary point, cross-cap
- start the path tracking at these point

Path tracking

Compute a set of parallelotopes that enclose each connected component

- Find at least one point on each connected component: x-critical point, boundary point, cross-cap
- start the path tracking at these point

Path tracking

Compute a set of parallelotopes that enclose each connected component

- Find at least one point on each connected component: x-critical point, boundary point, cross-cap
- start the path tracking at these point

Path tracking

Compute a set of parallelotopes that enclose each connected component

- Find at least one point on each connected component: x-critical point, boundary point, cross-cap
- start the path tracking at these point

THANK YOU!

