

Universitatide BARCELONA

Regularity and Gröbner bases of the Rees algebra of edge ideals of bipartite graphs

Yairon Cid Ruiz
University of Barcelona

Journées Nationales de Calcul Formel
CIRM, Luminy, January 2018

Definition

A bipartite graph $G=(X, Y, E)$ consists of two disjoint sets of vertices $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{m}\right\}$, and a set of edges

$$
E \subset\{(x, y) \mid x \in X, y \in Y\}
$$

bipartite \Longleftrightarrow no odd cycles \Longleftrightarrow 2-colorable.

Definition

A bipartite graph $G=(X, Y, E)$ consists of two disjoint sets of vertices $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{m}\right\}$, and a set of edges

$$
E \subset\{(x, y) \mid x \in X, y \in Y\}
$$

bipartite \Longleftrightarrow no odd cycles \Longleftrightarrow 2-colorable.

Definition

Let \mathbb{K} be a field and $R=\mathbb{K}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right]$. The edge ideal $I=$ $I(G)$, associated to G, is defined by

$$
I=\left(x_{i} y_{j} \mid\left(x_{i}, y_{j}\right) \in E\right)
$$

$$
I=\left(x_{1} y_{3}, x_{2} y_{1}, x_{3} y_{2}, x_{3} y_{3}, x_{3} y_{4}\right) \subset R
$$

Definition

Let $\mathcal{R}(I)=\bigoplus_{i=0}^{\infty} I^{i} t^{i} \subset R[t]$ be the Res algebra of the edge ideal I. Let f_{1}, \ldots, f_{q} be the square free monomials of degree two generating l. Let $S=R\left[T_{1}, \ldots, T_{q}\right]$, and define the following map

$$
\begin{aligned}
& S=\mathbb{K}\left[x_{1}, \ldots, x_{n}, y_{1} \ldots, y_{m}, T_{1}, \ldots, T_{q}\right] \xrightarrow{\psi} \mathcal{R}(I) \subset R[t], \\
& \psi\left(x_{i}\right)=x_{i}, \quad \psi\left(y_{i}\right)=y_{i}, \quad \psi\left(T_{i}\right)=f_{i} t .
\end{aligned}
$$

Then the presentation of $\mathcal{R}(I)$ is given by S / \mathcal{K} where $\mathcal{K}=\operatorname{Ker}(\psi)$.

Problem

In terms of the combinatorics of the bipartite graph G, we want to:

Definition

Let $\mathcal{R}(I)=\bigoplus_{i=0}^{\infty} I^{i} t^{i} \subset R[t]$ be the Res algebra of the edge ideal I. Let f_{1}, \ldots, f_{q} be the square free monomials of degree two generating l. Let $S=R\left[T_{1}, \ldots, T_{q}\right]$, and define the following map

$$
\begin{aligned}
& S=\mathbb{K}\left[x_{1}, \ldots, x_{n}, y_{1} \ldots, y_{m}, T_{1}, \ldots, T_{q}\right] \xrightarrow{\psi} \mathcal{R}(I) \subset R[t], \\
& \psi\left(x_{i}\right)=x_{i}, \quad \psi\left(y_{i}\right)=y_{i}, \quad \psi\left(T_{i}\right)=f_{i} t .
\end{aligned}
$$

Then the presentation of $\mathcal{R}(I)$ is given by S / \mathcal{K} where $\mathcal{K}=\operatorname{Ker}(\psi)$.

Problem

In terms of the combinatorics of the bipartite graph G, we want to:

- Describe the universal Gröbner basis of \mathcal{K}.
- Compute the Castelnuovo-Mumford regularity of $\mathcal{R}(I)$
- Study the regularity of the powers of the ideal I.

Definition

Let $\mathcal{R}(I)=\bigoplus_{i=0}^{\infty} I^{i} t^{i} \subset R[t]$ be the Res algebra of the edge ideal I. Let f_{1}, \ldots, f_{q} be the square free monomials of degree two generating l. Let $S=R\left[T_{1}, \ldots, T_{q}\right]$, and define the following map

$$
\begin{aligned}
& S=\mathbb{K}\left[x_{1}, \ldots, x_{n}, y_{1} \ldots, y_{m}, T_{1}, \ldots, T_{q}\right] \xrightarrow{\psi} \mathcal{R}(I) \subset R[t], \\
& \psi\left(x_{i}\right)=x_{i}, \quad \psi\left(y_{i}\right)=y_{i}, \quad \psi\left(T_{i}\right)=f_{i} t .
\end{aligned}
$$

Then the presentation of $\mathcal{R}(I)$ is given by S / \mathcal{K} where $\mathcal{K}=\operatorname{Ker}(\psi)$.

Problem

In terms of the combinatorics of the bipartite graph G, we want to:

- Describe the universal Gröbner basis of \mathcal{K}.
- Compute the Castelnuovo-Mumford regularity of $\mathcal{R}(I)$.
- Study the regularity of the powers of the ideal /

Definition

Let $\mathcal{R}(I)=\bigoplus_{i=0}^{\infty} I^{i} t^{i} \subset R[t]$ be the Res algebra of the edge ideal I. Let f_{1}, \ldots, f_{q} be the square free monomials of degree two generating l. Let $S=R\left[T_{1}, \ldots, T_{q}\right]$, and define the following map

$$
\begin{aligned}
& S=\mathbb{K}\left[x_{1}, \ldots, x_{n}, y_{1} \ldots, y_{m}, T_{1}, \ldots, T_{q}\right] \xrightarrow{\psi} \mathcal{R}(I) \subset R[t], \\
& \psi\left(x_{i}\right)=x_{i}, \quad \psi\left(y_{i}\right)=y_{i}, \quad \psi\left(T_{i}\right)=f_{i} t .
\end{aligned}
$$

Then the presentation of $\mathcal{R}(I)$ is given by S / \mathcal{K} where $\mathcal{K}=\operatorname{Ker}(\psi)$.

Problem

In terms of the combinatorics of the bipartite graph G, we want to:

- Describe the universal Gröbner basis of \mathcal{K}.
- Compute the Castelnuovo-Mumford regularity of $\mathcal{R}(I)$.
- Study the regularity of the powers of the ideal I.

Matrix associated to the presentation of $\mathcal{R}(I)$

Given the presentation of the Rees algebra $\psi: S \rightarrow \mathcal{R}(I)$

$$
\psi\left(x_{i}\right)=x_{i}, \quad \psi\left(y_{i}\right)=y_{i}, \quad \psi\left(T_{i}\right)=f_{i} t .
$$

Let $A=\left(a_{i, j}\right) \in \mathbb{Z}^{n+m, q}$ be the incidence matrix of G, i.e. each column corresponds to an edge f_{i}. Then we construct the following matrix

\mathcal{K} is a toric ideal (Sturmfels

Matrix associated to the presentation of $\mathcal{R}(I)$

Given the presentation of the Res algebra $\psi: S \rightarrow \mathcal{R}(I)$

$$
\psi\left(x_{i}\right)=x_{i}, \quad \psi\left(y_{i}\right)=y_{i}, \quad \psi\left(T_{i}\right)=f_{i} t .
$$

Let $A=\left(a_{i, j}\right) \in \mathbb{Z}^{n+m, q}$ be the incidence matrix of G, i.e. each column corresponds to an edge f_{i}. Then we construct the following matrix

$$
M=\left(\begin{array}{ccccccccc}
f_{1} t & \ldots & f_{q} t & x_{1} & \ldots & x_{n} & y_{1} & \ldots & y_{m} \\
a_{1,1} & \ldots & a_{1, q} & \mathbf{e}_{\mathbf{1}} & \ldots & \mathbf{e}_{\mathbf{n}} & \mathbf{e}_{\mathbf{n}+\mathbf{1}} & \ldots & \mathbf{e}_{\mathbf{n}+\mathbf{m}} \\
\vdots & \ddots & \vdots & & & & & & \\
a_{n+m, 1} & \ldots & a_{n+m, q} & & & & & & \\
1 & \ldots & 1 & & & & & &
\end{array}\right)
$$

\mathcal{K} is a doric ideal (Sturmfels

$\mathcal{K}=\left(\boldsymbol{T}_{\times \mathrm{K}} \alpha^{\alpha^{+}} \quad \mathbf{T r M y}^{\alpha^{-}} \mid a \in \operatorname{Kerz}(M)\right)$

Matrix associated to the presentation of $\mathcal{R}(I)$

Given the presentation of the Res algebra $\psi: S \rightarrow \mathcal{R}(I)$

$$
\psi\left(x_{i}\right)=x_{i}, \quad \psi\left(y_{i}\right)=y_{i}, \quad \psi\left(T_{i}\right)=f_{i} t .
$$

Let $A=\left(a_{i, j}\right) \in \mathbb{Z}^{n+m, q}$ be the incidence matrix of G, i.e. each column corresponds to an edge f_{i}. Then we construct the following matrix

$$
M=\left(\begin{array}{ccccccccc}
f_{1} t & \ldots & f_{q} t & x_{1} & \ldots & x_{n} & y_{1} & \ldots & y_{m} \\
a_{1,1} & \ldots & a_{1, q} & \mathbf{e}_{\mathbf{1}} & \ldots & \mathbf{e}_{\mathbf{n}} & \mathbf{e}_{\mathbf{n}+\mathbf{1}} & \ldots & \mathbf{e}_{\mathbf{n}+\mathbf{m}} \\
\vdots & \ddots & \vdots & & & & & & \\
a_{n+m, 1} & \ldots & a_{n+m, q} & & & & & & \\
1 & \ldots & 1 & & & & & &
\end{array}\right)
$$

\mathcal{K} is a doric ideal (Sturmfels

$$
\mathcal{K}=\left(\mathbf{T x y}^{\alpha^{+}}-\mathbf{T}_{\mathbf{x}} \mathbf{y}^{\alpha^{-}} \mid \alpha \in \operatorname{Ker}_{\mathbb{Z}}(M)\right)
$$

Example

$$
\begin{aligned}
& I=\left(x_{1} y_{2}, x_{2} y_{1}, x_{2} y_{2}\right) \\
& 0 \rightarrow \mathcal{K} \rightarrow S \rightarrow \mathcal{R}(I) \rightarrow 0
\end{aligned}
$$

$$
T_{1} \mapsto x_{1} y_{2} t, T_{2} \mapsto x_{2} y_{1} t, T_{3} \mapsto x_{2} y_{2} t
$$

Example

$$
\begin{aligned}
& I=\left(x_{1} y_{2}, x_{2} y_{1}, x_{2} y_{2}\right) \\
& 0 \rightarrow \mathcal{K} \rightarrow S \rightarrow \mathcal{R}(I) \rightarrow 0 \\
& T_{1} \mapsto x_{1} y_{2} t, T_{2} \mapsto x_{2} y_{1} t, T_{3} \mapsto x_{2} y_{2} t
\end{aligned}
$$

$$
M=\begin{gathered}
\\
x_{1} \\
x_{2} \\
y_{1} \\
y_{2} \\
t
\end{gathered}\left(\begin{array}{ccc|cccc}
x_{1} y_{2} t & x_{2} y_{1} t & x_{2} y_{2} t & x_{1} & x_{2} & y_{1} & y_{2} \\
1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Example

$$
\begin{aligned}
& I=\left(x_{1} y_{2}, x_{2} y_{1}, x_{2} y_{2}\right) \\
& 0 \rightarrow \mathcal{K} \rightarrow S \rightarrow \mathcal{R}(I) \rightarrow 0 \\
& T_{1} \mapsto x_{1} y_{2} t, T_{2} \mapsto x_{2} y_{1} t, T_{3} \mapsto x_{2} y_{2} t
\end{aligned}
$$

$$
M=\begin{gathered}
\\
x_{1} \\
x_{2} \\
y_{1} \\
y_{2} \\
t
\end{gathered}\left(\begin{array}{ccc|cccc}
x_{1} y_{2} t & x_{2} y_{1} t & x_{2} y_{2} t & x_{1} & x_{2} & y_{1} & y_{2} \\
1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 0
\end{array}\right)
$$

$$
\mathcal{K}=\left(T_{1}^{\alpha_{1}^{+}} T_{2}^{\alpha_{2}^{+}} T_{3}^{\alpha_{3}^{+}} x_{1}^{\alpha_{4}^{+}} x_{2}^{\alpha_{5}^{+}} y_{1}^{\alpha_{6}^{+}} y_{2}^{\alpha_{7}^{+}}\right.
$$

$$
\left.-T_{1}^{\alpha_{1}^{-}} T_{2}^{\alpha_{2}^{-}} T_{3}^{\alpha_{3}^{-}} x_{1}^{\alpha_{4}^{-}} x_{2}^{\alpha_{5}^{-}} y_{1}^{\alpha_{6}^{-}} y_{2}^{\alpha_{7}^{-}} \mid \alpha \in \operatorname{Ker}_{\mathbb{Z}}(M)\right)
$$

Universal Gröbner basis of \mathcal{K}

$$
\mathcal{U}=\bigcup_{<\text {runs over all possible term orders }} \mathcal{G}<(\mathcal{K})
$$

($\mathcal{G}_{<}(\mathcal{K})$ denotes reduced Gröbner basis with respect to $<$)

Circuit

$\alpha \in \operatorname{Ker}_{\mathbb{Z}}(M)$ is called a circuit if it has minimal support $\operatorname{supp}(\alpha)$ with respect to inclusion and its coordinates are relatively prime

In general we have that the set of circuits is contained in \mathcal{U}

Lemma

If G is a bipartite graph then $\mathcal{U}=\left\{\mathbf{T x y}^{\alpha^{+}}-\mathbf{T} \mathbf{x} \mathbf{y}^{\alpha^{-}} \mid \alpha\right.$ is a circuit of M

Proof

From Gitler, Valencia, and Villarreal 2005, then M is totally unimodular. Hence, by Sturmfels 1996 we get the equality.

Universal Gröbner basis of \mathcal{K}

$$
\mathcal{U}=\bigcup_{<\text {runs over all possible term orders }} \mathcal{G}_{<}(\mathcal{K})
$$

($\mathcal{G}<(\mathcal{K})$ denotes reduced Gröbner basis with respect to $<$)

Circuit

$\alpha \in \operatorname{Ker}_{\mathbb{Z}}(M)$ is called a circuit if it has minimal support supp (α) with respect to inclusion and its coordinates are relatively prime.

In general we have that the set of circuits is contained in \mathcal{U}.

Universal Gröbner basis of \mathcal{K}

$$
\mathcal{U}=\bigcup_{<\text {runs over all possible term orders }} \mathcal{G}<(\mathcal{K})
$$

($\mathcal{G}_{<}(\mathcal{K})$ denotes reduced Gröbner basis with respect to $<$)

Circuit

$\alpha \in \operatorname{Ker}_{\mathbb{Z}}(M)$ is called a circuit if it has minimal support supp (α) with respect to inclusion and its coordinates are relatively prime.

In general we have that the set of circuits is contained in \mathcal{U}.

Lemma

If G is a bipartite graph then $\mathcal{U}=\left\{\mathbf{T}_{\mathbf{x}}{ }^{\alpha^{+}}-\mathbf{T} \mathbf{x y}^{\alpha^{-}} \mid \alpha\right.$ is a circuit of $\left.M\right\}$.
Proof.
From Gitler, Valencia, and Villarreal 2005, then M is totally unimodular. Hence, by Sturmfels 1996 we get the equality.

Theorem

Let G be bipartite graph, then \mathcal{U} is given by

$$
\mathcal{U}=\left\{T_{w^{+}}-T_{w^{-}} \mid w \text { is an even cycle }\right\}
$$

$$
\cup\left\{v_{0} T_{w^{+}}-v_{a} T_{w^{-}} \mid w=\left(v_{0}, \ldots, v_{a}\right) \text { is an even path }\right\}
$$

$$
\cup\left\{u_{0} u_{\mathrm{a}} T_{w_{1}^{+}} T_{w_{2}^{-}}-v_{0} v_{b} T_{w_{1}^{-}} T_{w_{2}^{+}} \mid w_{1}=\left(u_{0}, \ldots, u_{\mathrm{a}}\right)\right. \text { and }
$$

$$
\left.w_{2}=\left(v_{0}, \ldots, v_{b}\right) \text { are disjoint odd paths }\right\} .
$$

Proof. (sketch).

- We construct the cone graph $C(G)$ of G (add a new vertex z and connect it to all vertices of G).

- Let $\mathbb{K}[C(G)]=\mathbb{K}[e \mid e \in E(C(G))] \subset R[z]$. Then we have a canonical map

$$
\begin{gathered}
\pi: S \longrightarrow \mathbb{K}[C(G)] \subset R[z] \\
\pi\left(x_{i}\right)=x_{i} z, \quad \pi\left(y_{i}\right)=y_{i} z, \quad \pi\left(T_{i}\right)=f_{i} .
\end{gathered}
$$

We have that $\mathcal{R}(I) \cong \mathbb{K}[C(G)]$ (Vasconcelos 1998), and so $\mathcal{K}=\operatorname{Ker}(\pi)$.

- From V/illarreal 1005 we can determine the circuits of the incidence matrix of $C(G)$. Finally, we translate them into the circuits of M.

Proof. (sketch).

- We construct the cone graph $C(G)$ of G (add a new vertex z and connect it to all vertices of G).

- Let $\mathbb{K}[C(G)]=\mathbb{K}[e \mid e \in E(C(G))] \subset R[z]$. Then we have a canonical map

$$
\begin{gathered}
\pi: S \longrightarrow \mathbb{K}[C(G)] \subset R[z], \\
\pi\left(x_{i}\right)=x_{i} z, \quad \pi\left(y_{i}\right)=y_{i} z, \quad \pi\left(T_{i}\right)=f_{i} .
\end{gathered}
$$

We have that $\mathcal{R}(I) \cong \mathbb{K}[C(G)]$ (Vasconcelos 1998), and so $\mathcal{K}=\operatorname{Ker}(\pi)$.

- From Villarreal 1995 we can determine the circuits of the incidence matrix of $C(G)$. Finally, we translate them into the circuits of M.

Proof. (sketch).

- We construct the cone graph $C(G)$ of G (add a new vertex z and connect it to all vertices of G).

- Let $\mathbb{K}[C(G)]=\mathbb{K}[e \mid e \in E(C(G))] \subset R[z]$. Then we have a canonical map

$$
\begin{gathered}
\pi: S \longrightarrow \mathbb{K}[C(G)] \subset R[z], \\
\pi\left(x_{i}\right)=x_{i} z, \quad \pi\left(y_{i}\right)=y_{i} z, \quad \pi\left(T_{i}\right)=f_{i} .
\end{gathered}
$$

We have that $\mathcal{R}(I) \cong \mathbb{K}[C(G)]$ (Vasconcelos 1998), and so $\mathcal{K}=\operatorname{Ker}(\pi)$.

- From Villarreal 1995 we can determine the circuits of the incidence matrix of $C(G)$. Finally, we translate them into the circuits of M.
S is bigraded with $\operatorname{bigrad}\left(x_{i}\right)=\operatorname{bigrad}\left(y_{i}\right)=(1,0)$ and $\operatorname{bigrad}\left(T_{i}\right)=(0,1)$.
$\mathcal{R}(I)$ as a bigraded S-module has a minimal bigraded free resolution

where $F_{i}=\oplus_{j} S\left(-a_{i j},-b_{i j}\right)$. As in Römer 2001, we can define

$$
\begin{aligned}
\operatorname{reg}_{x y}(\mathcal{R}(I)) & =\max _{i, j}\left\{a_{i j}-i\right\}, \\
\operatorname{reg}_{T}(\mathcal{R}(I)) & =\max _{i, j}\left\{b_{i j}-i\right\}, \\
\operatorname{reg}(\mathcal{R}(I)) & =\max _{i, j}\left\{a_{i j}+b_{i j}-i\right\} .
\end{aligned}
$$

Theorem (Römer

Chardin

$$
\operatorname{reg}\left(I^{s}\right)<2 s+\operatorname{reg}_{x y}(\mathcal{R}(I)) \text { for all } s \geq 1 \text {. }
$$

Theorem

Let $<$ be any term order in S, then we have reg $(\mathcal{R}(I)) \leq \operatorname{reg}_{x y}\left(S / i n_{<}(\mathcal{K})\right)$.
S is bigraded with $\operatorname{bigrad}\left(x_{i}\right)=\operatorname{bigrad}\left(y_{i}\right)=(1,0)$ and $\operatorname{bigrad}\left(T_{i}\right)=(0,1)$. $\mathcal{R}(I)$ as a bigraded S-module has a minimal bigraded free resolution

$$
0 \longrightarrow F_{p} \longrightarrow \cdots \longrightarrow F_{1} \longrightarrow F_{0} \longrightarrow \mathcal{R}(I) \longrightarrow 0
$$

where $F_{i}=\oplus_{j} S\left(-a_{i j},-b_{i j}\right)$. As in Römer 2001, we can define

$$
\begin{aligned}
\operatorname{reg}_{x y}(\mathcal{R}(I)) & =\max _{i, j}\left\{a_{i j}-i\right\}, \\
\operatorname{reg}_{T}(\mathcal{R}(I)) & =\max _{i, j}\left\{b_{i j}-i\right\}, \\
\operatorname{reg}(\mathcal{R}(I)) & =\max _{i, j}\left\{a_{i j}+b_{i j}-i\right\} .
\end{aligned}
$$

Theorem (Römer

Theorem

S is bigraded with $\operatorname{bigrad}\left(x_{i}\right)=\operatorname{bigrad}\left(y_{i}\right)=(1,0)$ and $\operatorname{bigrad}\left(T_{i}\right)=(0,1)$. $\mathcal{R}(I)$ as a bigraded S-module has a minimal bigraded free resolution

$$
0 \longrightarrow F_{p} \longrightarrow \cdots \longrightarrow F_{1} \longrightarrow F_{0} \longrightarrow \mathcal{R}(I) \longrightarrow 0,
$$

where $F_{i}=\oplus_{j} S\left(-a_{i j},-b_{i j}\right)$. As in Römer 2001, we can define

$$
\begin{aligned}
\operatorname{reg}_{x y}(\mathcal{R}(I)) & =\max _{i, j}\left\{a_{i j}-i\right\}, \\
\operatorname{reg}_{T}(\mathcal{R}(I)) & =\max _{i, j}\left\{b_{i j}-i\right\}, \\
\operatorname{reg}(\mathcal{R}(I)) & =\max _{i, j}\left\{a_{i j}+b_{i j}-i\right\} .
\end{aligned}
$$

Theorem (Römer Chardin

$$
\operatorname{reg}\left(I^{s}\right) \leq 2 s+\operatorname{reg}_{x y}(\mathcal{R}(I)) \text { for all } s \geq 1
$$

S is bigraded with $\operatorname{bigrad}\left(x_{i}\right)=\operatorname{bigrad}\left(y_{i}\right)=(1,0)$ and $\operatorname{bigrad}\left(T_{i}\right)=(0,1)$. $\mathcal{R}(I)$ as a bigraded S-module has a minimal bigraded free resolution

$$
0 \longrightarrow F_{p} \longrightarrow \cdots \longrightarrow F_{1} \longrightarrow F_{0} \longrightarrow \mathcal{R}(I) \longrightarrow 0
$$

where $F_{i}=\oplus_{j} S\left(-a_{i j},-b_{i j}\right)$. As in Römer 2001, we can define

$$
\begin{aligned}
\operatorname{reg}_{x y}(\mathcal{R}(I)) & =\max _{i, j}\left\{a_{i j}-i\right\}, \\
\operatorname{reg}_{T}(\mathcal{R}(I)) & =\max _{i, j}\left\{b_{i j}-i\right\}, \\
\operatorname{reg}(\mathcal{R}(I)) & =\max _{i, j}\left\{a_{i j}+b_{i j}-i\right\} .
\end{aligned}
$$

Theorem (Römer
 Chardin

$$
\operatorname{reg}\left(I^{s}\right) \leq 2 s+\operatorname{reg}_{x y}(\mathcal{R}(I)) \text { for all } s \geq 1
$$

Theorem

Let $<$ be any term order in S, then we have $\operatorname{reg}_{x y}(\mathcal{R}(I)) \leq \operatorname{reg}_{x y}\left(S / i n_{<}(\mathcal{K})\right)$.

Regularity of the powers of I

A celebrated result of Cutkosky, Herzog, and Trung 1999 and Kodiyalam 2000 says that (for a general ideal in a polynomial ring) $\operatorname{reg}\left(I^{s}\right)=a s+b$ for $s \gg 0$. But the exact form of this linear function and when reg $\left(I^{5}\right)$ starts to be linear is still wide open even for monomial ideals.

Corollary

G bipartite graph with bipartition $V(G)=X \cup Y$. Then, for all $s \geq 1$ we have

Proof

Using ou characterization of \mathcal{U}, a "suitable" term order and the Taylor resolution
then we can bound reg $\operatorname{ray}(\mathrm{S} / \mathrm{in}<(\mathcal{K}))$

Regularity of the powers of I

A celebrated result of Cutkosky, Herzog, and Trung 1999 and Kodiyalam 2000 says that (for a general ideal in a polynomial ring) $\operatorname{reg}\left(I^{s}\right)=a s+b$ for $s \gg 0$. But the exact form of this linear function and when reg $\left(I^{5}\right)$ starts to be linear is still wide open even for monomial ideals.

Corollary

G bipartite graph with bipartition $V(G)=X \cup Y$. Then, for all $s \geq 1$ we have

$$
\operatorname{reg}\left(I^{s}\right) \leq 2 s+\min \{|X|,|Y|\}-1
$$

Proof.

Using our characterization of \mathcal{U}, a "suitable" term order and the Taylor resolution, then we can bound $\operatorname{reg}_{x y}\left(S / i n_{<}(\mathcal{K})\right)$.

Let G be a bipartite graph and $I=I(G)$ be its edge ideal. The total regularity of $\mathcal{R}(I)$ is given by

$$
\operatorname{reg}(\mathcal{R}(I))=\operatorname{match}(G)
$$

Proof (sketch).

Theorem

Let G be a bipartite graph and $I=I(G)$ be its edge ideal. The total regularity of $\mathcal{R}(I)$ is given by

$$
\operatorname{reg}(\mathcal{R}(I))=\operatorname{match}(G)
$$

Proof (sketch).

- Since M is totally unimodular, then by Gitler, Valencia, and Villarreal 2005 we have that $\mathcal{R}(I)$ is a normal domain.
- From Hochster 1972, then $\mathcal{R}(I)$ is Cohen-Macaulay and so it has a canonical module $\omega_{\mathcal{R}(I)}$
- The minimal free resolutions of $R(I)$ and $\omega_{R}(I)$ are dual.
- $\omega_{\mathcal{R}(I)}$ can be computed using a formula of Danilov and Stanley (Gitler, Valencia and Villarreal 2005)

Theorem

Let G be a bipartite graph and $I=I(G)$ be its edge ideal. The total regularity of $\mathcal{R}(I)$ is given by

$$
\operatorname{reg}(\mathcal{R}(I))=\operatorname{match}(G)
$$

Proof (sketch).

- Since M is totally unimodular, then by Gitler, Valencia, and Villarreal 2005 we have that $\mathcal{R}(I)$ is a normal domain.
- From Hochster 1972, then $\mathcal{R}(I)$ is Cohen-Macaulay and so it has a canonical module $\omega_{\mathcal{R}(I)}$.
- The minimal free resolutions of $\mathcal{R}(I)$ and $\omega_{\mathcal{R}(I)}$ are dual.

$$
0
$$

can be computed using a formula of Danilov and Stanley (Gitler, Valencia, and Villarreal 2n05)

Theorem

Let G be a bipartite graph and $I=I(G)$ be its edge ideal. The total regularity of $\mathcal{R}(I)$ is given by

$$
\operatorname{reg}(\mathcal{R}(I))=\operatorname{match}(G)
$$

Proof (sketch).

- Since M is totally unimodular, then by Gitler, Valencia, and Villarreal 2005 we have that $\mathcal{R}(I)$ is a normal domain.
- From Hochster 1972, then $\mathcal{R}(I)$ is Cohen-Macaulay and so it has a canonical module $\omega_{\mathcal{R}(I)}$.
- The minimal free resolutions of $\mathcal{R}(I)$ and $\omega_{\mathcal{R}(I)}$ are dual.

$$
0
$$

can be computed using a formula of Danilov and Stanley (Gitler, Valencia, and Villarreal 2005).

Theorem

Let G be a bipartite graph and $I=I(G)$ be its edge ideal. The total regularity of $\mathcal{R}(I)$ is given by

$$
\operatorname{reg}(\mathcal{R}(I))=\operatorname{match}(G)
$$

Proof (sketch).

- Since M is totally unimodular, then by Gitler, Valencia, and Villarreal 2005 we have that $\mathcal{R}(I)$ is a normal domain.
- From Hochster 1972, then $\mathcal{R}(I)$ is Cohen-Macaulay and so it has a canonical module $\omega_{\mathcal{R}(I)}$.
- The minimal free resolutions of $\mathcal{R}(I)$ and $\omega_{\mathcal{R}(I)}$ are dual.
- $\omega_{\mathcal{R}(I)}$ can be computed using a formula of Danilov and Stanley (Gitler, Valencia, and Villarreal 2005).

Corollary

- For all $s \geq \operatorname{match}(G)+|E(G)|+1$ we have

$$
\operatorname{reg}\left(I(G)^{s+1}\right)=\operatorname{reg}\left(I(G)^{s}\right)+2
$$

- For all $s \geq 1$ we have

$$
\operatorname{reg}\left(I(G)^{s}\right) \leq 2 s+\operatorname{match}(G)-1
$$

Proof.

Using the upper bound for the total regularity we get

$$
\begin{aligned}
\operatorname{reg}_{T}(\mathcal{R}(I)) & \leq \operatorname{match}(G) \\
\operatorname{reg}_{x y}(\mathcal{R}(I)) & \leq \operatorname{match}(G)-1 .
\end{aligned}
$$

Then the results follow from Cutkosky, Herzog, and Trung 1999 and Römer 2001, respectively.

A sharper upper bound and a Conjecture

For bipartite graphs, we have the following inequalities
$\operatorname{reg}\left(I^{s}\right) \leq 2 s+\operatorname{co-chord}(G)-1 \leq 2 s+\operatorname{match}(G)-1 \leq 2 s+\min \{|X|,|Y|\}-1$.
The upper bound $\operatorname{reg}\left(I^{s}\right) \leq 2 s+\operatorname{co-chord}(G)-1$ was obtained in Jayanthan, Narayanan, and Selvaraja 2016 using a combinatorial argument called "even connection".

Conjecture (Aliooee, Banerjee, Beyarslan and Hà)

Let G be an arbitrary graph then

$$
\operatorname{reg}\left(/(G)^{5}\right) \leq 2 s+\operatorname{reg}(/(G))-2
$$

> (We always have $2 s+\operatorname{co}-\operatorname{chord}(G)-1 \leq 2 s+\operatorname{reg}(/(G))-2$.)

A sharper upper bound and a Conjecture

For bipartite graphs, we have the following inequalities

$$
\operatorname{reg}\left(I^{s}\right) \leq 2 s+\operatorname{co-chord}(G)-1 \leq 2 s+\operatorname{match}(G)-1 \leq 2 s+\min \{|X|,|Y|\}-1
$$

The upper bound $\operatorname{reg}\left(I^{s}\right) \leq 2 s+\operatorname{co-chord}(G)-1$ was obtained in Jayanthan, Narayanan, and Selvaraja 2016 using a combinatorial argument called "even connection".

Conjecture (Alilooee, Banerjee, Beyarslan and Hà)

Let G be an arbitrary graph then

$$
\operatorname{reg}\left(I(G)^{s}\right) \leq 2 s+\operatorname{reg}(I(G))-2
$$

for all $s \geq 1$.
(We always have $2 s+\operatorname{co}-\operatorname{chord}(G)-1 \leq 2 s+\operatorname{reg}(I(G))-2$.)

References I

Chardin, Marc (2013). "Powers of ideals: Betti numbers, cohomology and regularity". In: Commutative algebra. Springer, New York, pp. 317-333. URL: https://doi.org/10.1007/978-1-4614-5292-8_9.
Cutkosky, S. Dale, Jürgen Herzog, and Ngô Viêt Trung (1999). "Asymptotic behaviour of the Castelnuovo-Mumford regularity". In: Compositio Math. 118.3, pp. 243-261.

Gitler, Isidoro, Carlos Valencia, and Rafael H. Villarreal (2005). "A note on the Rees algebra of a bipartite graph". In: J. Pure Appl. Algebra 201.1-3, pp. 17-24.
Hochster, M. (1972). "Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes". In: Ann. of Math. (2) 96, pp. 318-337. Jayanthan, AV, N Narayanan, and S Selvaraja (2016). "Regularity of powers of bipartite graphs". In: Journal of Algebraic Combinatorics, pp. 1-22.

References II

Kodiyalam, Vijay (2000). "Asymptotic behaviour of Castelnuovo-Mumford regularity". In: Proc. Amer. Math. Soc. 128.2, pp. 407-411.
Römer, Tim (2001). "Homological properties of bigraded algebras". In: Illinois J. Math. 45.4, pp. 1361-1376.
Sturmfels, Bernd (1996). Gröbner bases and convex polytopes. Vol. 8. University Lecture Series. American Mathematical Society, Providence, RI, pp. xii +162 . ISBN: 0-8218-0487-1.
Vasconcelos, Wolmer V. (1998). Computational methods in commutative algebra and algebraic geometry. Vol. 2. Algorithms and Computation in Mathematics. Springer-Verlag, Berlin.
Villarreal, Rafael H. (1995). "Rees algebras of edge ideals". In: Comm. Algebra 23.9, pp. 3513-3524.

Universitatide BARCELONA

Merci beaucoup!

