Why Algorithmic and Rigorous Polynomial Approximations?

- Rigorous Polynomial Approximation $=$ Polynomial + error bound

- Rigorous methods
- Algorithmic methods
- Efficient and accurate
- To be integrated in a large-scale library

Why Algorithmic and Rigorous Polynomial Approximations?

- Rigorous Polynomial Approximation $=$ Polynomial + error bound

- Solutions of coupled systems of linear ordinary differential equations.
- with componentwise error bounds.
- Rigorous methods
- Algorithmic methods
- Efficient and accurate
- To be integrated in a large-scale library

Why Algorithmic and Rigorous Polynomial Approximations?

- Rigorous Polynomial Approximation $=$ Polynomial + error bound

- Rigorous methods
- Algorithmic methods
- Efficient and accurate
- To be integrated in a large-scale library
- Solutions of coupled systems of linear ordinary differential equations.
- with componentwise error bounds.
- Various fields of applications:

Safety-critical engineering

Computer-aided mathematics

Outline

1 Introduction

2 Multinorm Validation: a New Framework

3 A Posteriori Validation of Vector-Valued D-Finite Functions

4 Conclusion and Future Work

Outline

1 Introduction

2 Multinorm Validation: a New Framework

3 A Posteriori Validation of Vector-Valued D-Finite Functions

4 Conclusion and Future Work

Banach Fixed-Point Theorem for A Posteriori Validation

$* *$ +

- Fixed-point equation $\mathbf{T} \cdot x=x$ with \mathbf{T} contracting,

General scheme

- Approximation x to exact solution x^{\star},
- Compute a posteriori error bounds with Banach theorem.

Banach Fixed-Point Theorem for A Posteriori Validation

General scheme

- Fixed-point equation $\mathbf{T} \cdot x=x$ with \mathbf{T} contracting,
- Approximation x to exact solution x^{\star},
- Compute a posteriori error bounds with Banach theorem.

Banach Fixed-Point Theorem

If (X, d) is complete and \mathbf{T} contracting of ratio $\mu<1$,

- T admits a unique fixed-point x^{\star}, and
- For all $x \in X$,

$$
\frac{d(x, \mathbf{T} \cdot x)}{1+\mu} \leqslant d\left(x, x^{\star}\right) \leqslant \frac{d(x, \mathbf{T} \cdot x)}{1-\mu} .
$$

Banach Fixed-Point Theorem for A Posteriori Validation

General scheme

- Fixed-point equation $\mathbf{T} \cdot x=x$ with \mathbf{T} contracting,
- Approximation x to exact solution x^{\star},
- Compute a posteriori error bounds with Banach theorem.

Banach Fixed-Point Theorem

If (X, d) is complete and \mathbf{T} contracting of ratio $\mu<1$,

- T admits a unique fixed-point x^{\star}, and
- For all $x \in X$,

$$
\frac{d(x, \mathbf{T} \cdot x)}{1+\mu} \leqslant d\left(x, x^{\star}\right) \leqslant \frac{d(x, \mathbf{T} \cdot x)}{1-\mu} .
$$

Sketch of the proof:

- $d\left(x, x^{\star}\right) \leqslant d(x, \mathbf{T} \cdot x)+d\left(\mathbf{T} \cdot x, x^{\star}\right)$

Banach Fixed-Point Theorem for A Posteriori Validation

General scheme

- Fixed-point equation $\mathbf{T} \cdot x=x$ with \mathbf{T} contracting,
- Approximation x to exact solution x^{\star},
- Compute a posteriori error bounds with Banach theorem.

Banach Fixed-Point Theorem

If (X, d) is complete and \mathbf{T} contracting of ratio $\mu<1$,

- T admits a unique fixed-point x^{\star}, and
- For all $x \in X$,

$$
\frac{d(x, \mathbf{T} \cdot x)}{1+\mu} \leqslant d\left(x, x^{\star}\right) \leqslant \frac{d(x, \mathbf{T} \cdot x)}{1-\mu} .
$$

Sketch of the proof:

- $d\left(x, x^{\star}\right) \leqslant d(x, \mathbf{T} \cdot x)+\mu d\left(x, x^{\star}\right)$

Banach Fixed-Point Theorem for A Posteriori Validation

General scheme

- Fixed-point equation $\mathbf{T} \cdot x=x$ with \mathbf{T} contracting,
- Approximation x to exact solution x^{\star},
- Compute a posteriori error bounds with Banach theorem.

Banach Fixed-Point Theorem

If (X, d) is complete and \mathbf{T} contracting of ratio $\mu<1$,

- T admits a unique fixed-point x^{\star}, and
- For all $x \in X$,

$$
\frac{d(x, \mathbf{T} \cdot x)}{1+\mu} \leqslant d\left(x, x^{\star}\right) \leqslant \frac{d(x, \mathbf{T} \cdot x)}{1-\mu} .
$$

Sketch of the proof:

- $(1-\mu) d\left(x, x^{\star}\right) \leqslant d(x, \mathbf{T} \cdot x)$

Banach Fixed-Point Theorem for A Posteriori Validation

General scheme
 General scheme

- Fixed-point equation $\mathbf{T} \cdot x=x$ with \mathbf{T} contracting,
- Approximation x to exact solution x^{\star},
- Compute a posteriori error bounds with Banach theorem.

Banach Fixed-Point Theorem

If (X, d) is complete and \mathbf{T} contracting of ratio $\mu<1$,

- T admits a unique fixed-point x^{\star}, and
- For all $x \in X$,

$$
\frac{d(x, \mathbf{T} \cdot x)}{1+\mu} \leqslant d\left(x, x^{\star}\right) \leqslant \frac{d(x, \mathbf{T} \cdot x)}{1-\mu} .
$$

Sketch of the proof:

- $(1-\mu) d\left(x, x^{\star}\right) \leqslant d(x, \mathbf{T} \cdot x)$

$$
\Rightarrow d\left(x, x^{\star}\right) \leqslant \frac{d(x, \mathbf{T} \cdot x)}{1-\mu} .
$$

Banach Fixed-Point Theorem for A Posteriori Validation

General scheme

- Fixed-point equation $\mathbf{T} \cdot x=x$ with \mathbf{T} contracting,
- Approximation x to exact solution x^{\star},
- Compute a posteriori error bounds with Banach theorem.

Banach Fixed-Point Theorem

If (X, d) is complete and \mathbf{T} contracting of ratio $\mu<1$,

- T admits a unique fixed-point x^{\star}, and
- For all $x \in X$,

$$
\frac{d(x, \mathbf{T} \cdot x)}{1+\mu} \leqslant d\left(x, x^{\star}\right) \leqslant \frac{d(x, \mathbf{T} \cdot x)}{1-\mu} .
$$

Sketch of the proof:

- $(1-\mu) d\left(x, x^{\star}\right) \leqslant d(x, \mathbf{T} \cdot x)$

$$
\Rightarrow d\left(x, x^{\star}\right) \leqslant \frac{d(x, \mathbf{T} \cdot x)}{1-\mu} .
$$

- $d(x, \mathbf{T} \cdot x) \leqslant d\left(x, x^{\star}\right)+d\left(x^{\star}, \mathbf{T} \cdot x\right)$

Banach Fixed-Point Theorem for A Posteriori Validation

General scheme

- Fixed-point equation $\mathbf{T} \cdot x=x$ with \mathbf{T} contracting,
- Approximation x to exact solution x^{\star},
- Compute a posteriori error bounds with Banach theorem.

Banach Fixed-Point Theorem

If (X, d) is complete and \mathbf{T} contracting of ratio $\mu<1$,

- T admits a unique fixed-point x^{\star}, and
- For all $x \in X$,

$$
\frac{d(x, \mathbf{T} \cdot x)}{1+\mu} \leqslant d\left(x, x^{\star}\right) \leqslant \frac{d(x, \mathbf{T} \cdot x)}{1-\mu} .
$$

Sketch of the proof:

- $(1-\mu) d\left(x, x^{\star}\right) \leqslant d(x, \mathbf{T} \cdot x)$

$$
\Rightarrow d\left(x, x^{\star}\right) \leqslant \frac{d(x, \mathbf{T} \cdot x)}{1-\mu} .
$$

- $(1+\mu) d\left(x, x^{\star}\right) \geqslant d(x, \mathbf{T} \cdot x)$

Banach Fixed-Point Theorem for A Posteriori Validation

General scheme

- Fixed-point equation $\mathbf{T} \cdot x=x$ with \mathbf{T} contracting,
- Approximation x to exact solution x^{\star},
- Compute a posteriori error bounds with Banach theorem.

Banach Fixed-Point Theorem

If (X, d) is complete and \mathbf{T} contracting of ratio $\mu<1$,

- T admits a unique fixed-point x^{\star}, and
- For all $x \in X$,

$$
\frac{d(x, \mathbf{T} \cdot x)}{1+\mu} \leqslant d\left(x, x^{\star}\right) \leqslant \frac{d(x, \mathbf{T} \cdot x)}{1-\mu} .
$$

Sketch of the proof:

- $(1-\mu) d\left(x, x^{\star}\right) \leqslant d(x, \mathbf{T} \cdot x)$

$$
\Rightarrow d\left(x, x^{\star}\right) \leqslant \frac{d(x, \mathbf{T} \cdot x)}{1-\mu} .
$$

- $(1+\mu) d\left(x, x^{\star}\right) \geqslant d(x, \mathbf{T} \cdot x)$

$$
\Rightarrow d\left(x, x^{*}\right) \geqslant \frac{d(x, \mathbf{T} \cdot x)}{1+\mu} .
$$

Banach Fixed-Point Theorem for A Posteriori Validation

- Fixed-point equation $\mathbf{T} \cdot x=x$ with \mathbf{T} contracting,

General scheme

- Approximation x to exact solution x^{\star},
- Compute a posteriori error bounds with Banach theorem.

Banach Fixed-Point Theorem

If (X, d) is complete and \mathbf{T} contracting of ratio $\mu<1$,

- T admits a unique fixed-point x^{\star}, and
- For all $x \in X$,

$$
\frac{d(x, \mathbf{T} \cdot x)}{1+\mu} \leqslant d\left(x, x^{\star}\right) \leqslant \frac{d(x, \mathbf{T} \cdot x)}{1-\mu} .
$$

Sketch of the proof:

- $(1-\mu) d\left(x, x^{\star}\right) \leqslant d(x, \mathbf{T} \cdot x)$

$$
\Rightarrow d\left(x, x^{\star}\right) \leqslant \frac{d(x, \mathbf{T} \cdot x)}{1-\mu} .
$$

- $(1+\mu) d\left(x, x^{\star}\right) \geqslant d(x, \mathbf{T} \cdot x)$

$$
\Rightarrow d\left(x, x^{*}\right) \geqslant \frac{d(x, \mathbf{T} \cdot x)}{1+\mu} .
$$

Quasi-Newton Method for $\mathbf{F} \cdot x=0$
Compute $\mathbf{A} \approx(\mathrm{DF})_{x}^{-1}$ in order to define:

$$
\mathbf{T} \cdot x=x-\mathbf{A} \cdot \mathbf{F} \cdot x
$$

Banach fixed-point theorem applies if for some $r>0$:

- $\mu=\sup _{\tilde{x} \in B(x, r)}\left\|\mathbf{1}-\mathbf{A} \cdot \mathrm{DF}_{\tilde{x}}\right\|<1$,
- $\|x-\mathbf{T} \cdot x\|+\mu r<r$.

Banach Fixed-Point Theorem for A Posteriori Validation

- Fixed-point equation $\mathbf{T} \cdot x=x$ with \mathbf{T} contracting,

General scheme

- Approximation x to exact solution x^{\star},
- Compute a posteriori error bounds with Banach theorem.

Banach Fixed-Point Theorem

If (X, d) is complete and \mathbf{T} contracting of ratio $\mu<1$,

- T admits a unique fixed-point x^{\star}, and
- For all $x \in X$,

$$
\frac{d(x, \mathbf{T} \cdot x)}{1+\mu} \leqslant d\left(x, x^{\star}\right) \leqslant \frac{d(x, \mathbf{T} \cdot x)}{1-\mu} .
$$

Sketch of the proof:

$$
\begin{aligned}
& -(1-\mu) d\left(x, x^{\star}\right) \leqslant d(x, \mathbf{T} \cdot x) \\
& \quad \Rightarrow d\left(x, x^{\star}\right) \leqslant \frac{d(x, \mathbf{T} \cdot x)}{1-\mu} . \\
& \quad(1+\mu) d\left(x, x^{\star}\right) \geqslant d(x, \mathbf{T} \cdot x) \\
& \quad \Rightarrow d\left(x, x^{*}\right) \geqslant \frac{d(x, \mathbf{T} \cdot x)}{1+\mu} .
\end{aligned}
$$

Quasi-Newton Method for $\mathbf{F} \cdot x=0$
Compute $\mathbf{A} \approx(\mathrm{DF})_{x}^{-1}$ in order to define:

$$
\mathbf{T} \cdot x=x-\mathbf{A} \cdot \mathbf{F} \cdot x
$$

Banach fixed-point theorem applies if for some $r>0$:

- $\mu=\sup _{\tilde{x} \in B(x, r)}\left\|\mathbf{1}-\mathbf{A} \cdot \mathrm{DF}_{\tilde{x}}\right\|<1$,
- $\|x-\mathbf{T} \cdot x\|+\mu r<r$.

Applications to function space problems:

- Early works by Kaucher, Miranker, Yamamoto et al (~ 80 's, ~90's).
■ Lessard et al (2007 - today).
- Benoit, Joldes, Mezzarobba (2011) Bréhard, Brisebarre, Joldes (2017).

Example: Polynomial Equation in the Plane

$$
\ldots . x^{2} \int_{0}^{+}
$$

Example: Polynomial Equation in the Plane

$$
\ldots+x^{+} \int_{0}^{+}{ }_{x}^{y}
$$

Example: Polynomial Equation in the Plane

$$
\ldots+\boldsymbol{x}^{+} \int_{S_{0}^{+}}^{x}
$$

Example: Polynomial Equation in the Plane

$$
\ldots+\infty \alpha^{0^{\circ}} \int_{0}^{+y}
$$

Example: Polynomial Equation in the Plane

$$
\ldots+\infty \alpha^{0^{\circ}} \int_{0}^{+y}
$$

Example: Polynomial Equation in the Plane

$$
\ldots+\boldsymbol{x}^{+} \int_{S_{0}^{+}}^{x}
$$

Example: Polynomial Equation in the Plane

$\ldots+0 \lambda^{\circ} \int_{0}^{+}{ }_{x}^{y}$

Example: Polynomial Equation in the Plane

$* x \rightarrow x^{2+5} \int \infty$

Example: Polynomial Equation in the Plane

$$
\ldots+\odot \alpha^{\infty} \int_{0}^{+y}
$$

Example: Polynomial Equation in the Plane

$$
\ldots+\circ x^{\omega} \int_{0}^{+y}
$$

Vector-valued Metric and Perov Theorem

Vector-Valued Metric

$\left(X_{i}, d_{i}\right)_{1 \leqslant i \leqslant p}$ complete metric spaces.

- $d(x, y)=\left(d_{1}\left(x_{1}, y_{1}\right), \ldots, d_{p}\left(x_{p}, y_{p}\right)\right)$ $\in \mathbb{R}_{+}^{p}$ vector-valued metric.
- $\mathbf{F}: X \rightarrow X$ is Λ-Lipschitz for $\Lambda \in \mathbb{R}_{+}^{p \times p}:$

$$
d(\mathbf{F} \cdot x, \mathbf{F} \cdot y) \leqslant \Lambda \cdot d(x, y) \quad \forall x, y \in X
$$

Vector-valued Metric and Perov Theorem

Vector-Valued Metric
$\left(X_{i}, d_{i}\right)_{1 \leqslant i \leqslant p}$ complete metric spaces.

- $d(x, y)=\left(d_{1}\left(x_{1}, y_{1}\right), \ldots, d_{p}\left(x_{p}, y_{p}\right)\right)$ $\in \mathbb{R}_{+}^{p}$ vector-valued metric.
- $\mathbf{F}: X \rightarrow X$ is Λ-Lipschitz for $\Lambda \in \mathbb{R}_{+}^{p \times p}:$

$$
d(\mathbf{F} \cdot x, \mathbf{F} \cdot y) \leqslant \Lambda \cdot d(x, y) \quad \forall x, y \in X
$$

Convergent to Zero Matrices

$\Lambda \in \mathbb{R}^{p \times p}$ is convergent to zero if:

- $\Lambda^{k} \rightarrow 0$ as $k \rightarrow \infty$,
- $\Leftrightarrow \rho(\Lambda)<1$.

Generalized Contractions

$f: X \rightarrow X$ is a generalized contraction if it is Λ-Lipschitz for Λ convergent to zero.

Vector-valued Metric and Perov Theorem

Vector-Valued Metric

$\left(X_{i}, d_{i}\right)_{1 \leqslant i \leqslant p}$ complete metric spaces.

$$
d\left(x, x^{\star}\right) \leqslant d(x, \mathbf{T} \cdot x)+d\left(\mathbf{T} \cdot x, x^{\star}\right)
$$

- $d(x, y)=\left(d_{1}\left(x_{1}, y_{1}\right), \ldots, d_{p}\left(x_{p}, y_{p}\right)\right)$ $\in \mathbb{R}_{+}^{p}$ vector-valued metric.
- $\mathbf{F}: X \rightarrow X$ is Λ-Lipschitz for $\Lambda \in \mathbb{R}_{+}^{p \times p}$:

$$
d(\mathbf{F} \cdot x, \mathbf{F} \cdot y) \leqslant \Lambda \cdot d(x, y) \quad \forall x, y \in X
$$

Convergent to Zero Matrices

$\Lambda \in \mathbb{R}^{p \times p}$ is convergent to zero if:

- $\Lambda^{k} \rightarrow 0$ as $k \rightarrow \infty$,
- $\Leftrightarrow \rho(\Lambda)<1$.

Generalized Contractions

$f: X \rightarrow X$ is a generalized contraction if it is Λ-Lipschitz for Λ convergent to zero.

Vector-valued Metric and Perov Theorem

Vector-Valued Metric

$\left(X_{i}, d_{i}\right)_{1 \leqslant i \leqslant p}$ complete metric spaces.

$$
d\left(x, x^{\star}\right) \leqslant d(x, \mathbf{T} \cdot x)+\Lambda \cdot d\left(x, x^{\star}\right)
$$

- $d(x, y)=\left(d_{1}\left(x_{1}, y_{1}\right), \ldots, d_{p}\left(x_{p}, y_{p}\right)\right)$ $\in \mathbb{R}_{+}^{p}$ vector-valued metric.
- $\mathbf{F}: X \rightarrow X$ is Λ-Lipschitz for $\Lambda \in \mathbb{R}_{+}^{p \times p}$:

$$
d(\mathbf{F} \cdot x, \mathbf{F} \cdot y) \leqslant \Lambda \cdot d(x, y) \quad \forall x, y \in X
$$

Convergent to Zero Matrices

$\Lambda \in \mathbb{R}^{p \times p}$ is convergent to zero if:

- $\Lambda^{k} \rightarrow 0$ as $k \rightarrow \infty$,
$■ \Leftrightarrow \rho(\Lambda)<1$.

Generalized Contractions

$f: X \rightarrow X$ is a generalized contraction if it is Λ-Lipschitz for Λ convergent to zero.

Vector-valued Metric and Perov Theorem

Vector-Valued Metric

$\left(X_{i}, d_{i}\right)_{1 \leqslant i \leqslant p}$ complete metric spaces.

$$
(\mathbf{1}-\Lambda) \cdot d\left(x, x^{\star}\right) \leqslant d(x, \mathbf{T} \cdot x)
$$

- $d(x, y)=\left(d_{1}\left(x_{1}, y_{1}\right), \ldots, d_{p}\left(x_{p}, y_{p}\right)\right)$ $\in \mathbb{R}_{+}^{p}$ vector-valued metric.
- $\mathbf{F}: X \rightarrow X$ is Λ-Lipschitz for $\Lambda \in \mathbb{R}_{+}^{p \times p}$:

$$
d(\mathbf{F} \cdot x, \mathbf{F} \cdot y) \leqslant \Lambda \cdot d(x, y) \quad \forall x, y \in X
$$

Convergent to Zero Matrices

$\Lambda \in \mathbb{R}^{p \times p}$ is convergent to zero if:

- $\Lambda^{k} \rightarrow 0$ as $k \rightarrow \infty$,
- $\Leftrightarrow \rho(\Lambda)<1$.

Generalized Contractions

$f: X \rightarrow X$ is a generalized contraction if it is Λ-Lipschitz for Λ convergent to zero.

Vector-valued Metric and Perov Theorem

Vector-Valued Metric

$\left(X_{i}, d_{i}\right)_{1 \leqslant i \leqslant p}$ complete metric spaces.

- $d(x, y)=\left(d_{1}\left(x_{1}, y_{1}\right), \ldots, d_{p}\left(x_{p}, y_{p}\right)\right)$ $\in \mathbb{R}_{+}^{p}$ vector-valued metric.
- $\mathbf{F}: X \rightarrow X$ is Λ-Lipschitz for $\Lambda \in \mathbb{R}_{+}^{p \times p}:$

$$
d(\mathbf{F} \cdot x, \mathbf{F} \cdot y) \leqslant \Lambda \cdot d(x, y) \quad \forall x, y \in X
$$

Convergent to Zero Matrices

$\Lambda \in \mathbb{R}^{p \times p}$ is convergent to zero if:

- $\Lambda^{k} \rightarrow 0$ as $k \rightarrow \infty$,
- $\Leftrightarrow \rho(\Lambda)<1$.

Generalized Contractions

$f: X \rightarrow X$ is a generalized contraction if it is Λ-Lipschitz for Λ convergent to zero.

$$
\begin{aligned}
& (\mathbf{1}-\Lambda) \cdot d\left(x, x^{\star}\right) \leqslant d(x, \mathbf{T} \cdot x) \\
& \quad \bullet(\mathbf{1}-\Lambda)^{-1}=\mathbf{1}+\Lambda+\Lambda^{2}+\cdots+\Lambda^{k}+\ldots \geqslant \mathbf{0} . \\
& \Rightarrow d\left(x, x^{\star}\right) \leqslant(\mathbf{1}-\Lambda)^{-1} \cdot d(x, \mathbf{T} \cdot x) .
\end{aligned}
$$

Vector-valued Metric and Perov Theorem

Vector-Valued Metric

$\left(X_{i}, d_{i}\right)_{1 \leqslant i \leqslant p}$ complete metric spaces.
■ $d(x, y)=\left(d_{1}\left(x_{1}, y_{1}\right), \ldots, d_{p}\left(x_{p}, y_{p}\right)\right)$ $\in \mathbb{R}_{+}^{p}$ vector-valued metric.

- $\mathbf{F}: X \rightarrow X$ is Λ-Lipschitz for $\Lambda \in \mathbb{R}_{+}^{p \times p}$:

$$
d(\mathbf{F} \cdot x, \mathbf{F} \cdot y) \leqslant \Lambda \cdot d(x, y) \quad \forall x, y \in X
$$

Convergent to Zero Matrices

$\Lambda \in \mathbb{R}^{p \times p}$ is convergent to zero if:

- $\Lambda^{k} \rightarrow 0$ as $k \rightarrow \infty$,
- $\Leftrightarrow \rho(\Lambda)<1$.

Generalized Contractions

$f: X \rightarrow X$ is a generalized contraction if it is Λ-Lipschitz for Λ convergent to zero.

Perov Fixed-Point Theorem

If (X, d) complete vector-valued metric space and $\mathbf{T} \Lambda$-Lipschitz with $\rho(\Lambda)<1$:

- T admits a unique fixed-point x^{\star}, and
- For all $x \in X$,

$$
\underbrace{d\left(x, x^{\star}\right)}_{\varepsilon} \leqslant(1-\Lambda)^{-1} \cdot \underbrace{d(x, \mathbf{T} \cdot x)}_{\eta} .
$$

Vector-valued Metric and Perov Theorem

Vector-Valued Metric

$\left(X_{i}, d_{i}\right)_{1 \leqslant i \leqslant p}$ complete metric spaces.

- $d(x, y)=\left(d_{1}\left(x_{1}, y_{1}\right), \ldots, d_{p}\left(x_{p}, y_{p}\right)\right)$ $\in \mathbb{R}_{+}^{p}$ vector-valued metric.
- $\mathbf{F}: X \rightarrow X$ is Λ-Lipschitz for $\Lambda \in \mathbb{R}_{+}^{p \times p}$:

$$
d(\mathbf{F} \cdot x, \mathbf{F} \cdot y) \leqslant \Lambda \cdot d(x, y) \quad \forall x, y \in X
$$

Convergent to Zero Matrices

$\Lambda \in \mathbb{R}^{p \times p}$ is convergent to zero if:

- $\Lambda^{k} \rightarrow 0$ as $k \rightarrow \infty$,
- $\Leftrightarrow \rho(\Lambda)<1$.

Generalized Contractions

$f: X \rightarrow X$ is a generalized contraction if it is Λ-Lipschitz for Λ convergent to zero.

Perov Fixed-Point Theorem

If (X, d) complete vector-valued metric space and $\mathbf{T} \Lambda$-Lipschitz with $\rho(\Lambda)<1$:

- T admits a unique fixed-point x^{\star}, and - For all $x \in X$,

$$
\underbrace{d\left(x, x^{\star}\right)}_{\varepsilon} \leqslant(1-\Lambda)^{-1} \cdot \underbrace{d(x, \mathbf{T} \cdot x)}_{\eta} .
$$

Vector-valued Metric and Perov Theorem

Vector-Valued Metric

$\left(X_{i}, d_{i}\right)_{1 \leqslant i \leqslant p}$ complete metric spaces.

- $d(x, y)=\left(d_{1}\left(x_{1}, y_{1}\right), \ldots, d_{p}\left(x_{p}, y_{p}\right)\right)$ $\in \mathbb{R}_{+}^{p}$ vector-valued metric.
- $\mathbf{F}: X \rightarrow X$ is Λ-Lipschitz for $\Lambda \in \mathbb{R}_{+}^{p \times p}$:

$$
d(\mathbf{F} \cdot x, \mathbf{F} \cdot y) \leqslant \Lambda \cdot d(x, y) \quad \forall x, y \in X
$$

Convergent to Zero Matrices

$\Lambda \in \mathbb{R}^{p \times p}$ is convergent to zero if:

- $\Lambda^{k} \rightarrow 0$ as $k \rightarrow \infty$,
- $\Leftrightarrow \rho(\Lambda)<1$.

Generalized Contractions

$f: X \rightarrow X$ is a generalized contraction if it is Λ-Lipschitz for Λ convergent to zero.

Perov Fixed-Point Theorem

If (X, d) complete vector-valued metric space and $\mathbf{T} \Lambda$-Lipschitz with $\rho(\Lambda)<1$:

- T admits a unique fixed-point x^{\star}, and - For all $x \in X$,

$$
\underbrace{d\left(x, x^{\star}\right)}_{\varepsilon} \leqslant(1-\Lambda)^{-1} \cdot \underbrace{d(x, \mathbf{T} \cdot x)}_{\eta} .
$$

Extending Perov Theorem with Lower Bounds

$\ldots+0 \lambda^{\circ} \int_{0_{0}^{+}}^{y}$

$$
(\mathbf{1}+\Lambda) \cdot d\left(x, x^{\star}\right) \geqslant d(x, \mathbf{T} \cdot x)
$$

Extending Perov Theorem with Lower Bounds

$(\mathbf{1}+\Lambda) \cdot d\left(x, x^{\star}\right) \geqslant d(x, \mathbf{T} \cdot x)$

- $(1+\Lambda)^{-1}=$ $\mathbf{1}-\Lambda+\Lambda^{2}-\cdots+(-1)^{k} \Lambda^{k}+\cdots \nsupseteq \mathbf{0}$.
\Rightarrow Cannot deduce lower bounds!

Extending Perov Theorem with Lower Bounds

$$
\ldots+x^{+} \int_{0}^{+}{ }_{x}^{y}
$$

Error Polytope

Let $\varepsilon=d\left(x, x^{*}\right)$ and $\eta=d(x, \mathbf{T} \cdot x)$:

$$
\begin{align*}
(\mathbf{1}-\Lambda) \cdot \varepsilon & \leqslant \eta \tag{P}\\
(\mathbf{1}+\Lambda) \cdot \varepsilon & \geqslant \eta \\
\varepsilon & \geqslant 0
\end{align*}
$$

Extending Perov Theorem with Lower Bounds

$\ldots+a \lambda^{\circ} \int_{0}^{+}{ }_{0}^{y}$

Error Polytope

Let $\varepsilon=d\left(x, x^{*}\right)$ and $\eta=d(x, \mathbf{T} \cdot x)$:

$$
\begin{array}{r}
(\mathbf{1}-\Lambda) \cdot \varepsilon \leqslant \eta \tag{P}\\
(\mathbf{1}+\Lambda) \cdot \varepsilon
\end{array} \begin{array}{r}
\\
\varepsilon \geqslant 0
\end{array}
$$

Extending Perov Theorem with Lower Bounds

$\ldots+0 \lambda^{\circ} \int_{0}^{+}{ }_{x}^{y}$

Error Polytope

Let $\varepsilon=d\left(x, x^{*}\right)$ and $\eta=d(x, \mathbf{T} \cdot x)$:

$$
\begin{array}{r}
(\mathbf{1}-\Lambda) \cdot \varepsilon \leqslant \eta \tag{P}\\
(\mathbf{1}+\Lambda) \cdot \varepsilon
\end{array} \begin{array}{r}
\\
\varepsilon \geqslant 0
\end{array}
$$

Extending Perov Theorem with Lower Bounds

$\ldots+o v^{\circ} \int_{0}^{+}{ }_{0}^{y}$

Error Polytope

Let $\varepsilon=d\left(x, x^{*}\right)$ and $\eta=d(x, \mathbf{T} \cdot x)$:

$$
\begin{align*}
(\mathbf{1}-\Lambda) \cdot \varepsilon & \leqslant \eta \tag{P}\\
(\mathbf{1}+\Lambda) \cdot \varepsilon & \geqslant \eta \\
\varepsilon & \geqslant 0
\end{align*}
$$

Extending Perov Theorem with Lower Bounds

Error Polytope
Let $\varepsilon=d\left(x, x^{*}\right)$ and $\eta=d(x, \mathbf{T} \cdot x)$:

$$
\begin{align*}
(\mathbf{1}-\Lambda) \cdot \varepsilon & \leqslant \eta \tag{P}\\
(\mathbf{1}+\Lambda) \cdot \varepsilon & \geqslant \eta \\
\varepsilon & \geqslant 0
\end{align*}
$$

Lower Bounds for Perov Theorem

For all $i \in \llbracket 1, p \rrbracket$,

$$
d\left(x, x^{\star}\right)_{i}=\varepsilon_{i} \geqslant \varepsilon_{i}^{-}
$$

with ε_{i}^{-}given by the intersection of the i-th lower bound constraint together with all the j-th upper bound constraints, for $j \neq i$.

Extending Perov Theorem with Lower Bounds

Error Polytope

Let $\varepsilon=d\left(x, x^{*}\right)$ and $\eta=d(x, \mathbf{T} \cdot x)$:

$$
\begin{array}{r}
(\mathbf{1}-\Lambda) \cdot \varepsilon \leqslant \eta \tag{P}\\
(\mathbf{1}+\Lambda) \cdot \varepsilon \geqslant \eta \\
\varepsilon \geqslant 0
\end{array}
$$

Lower Bounds for Perov Theorem

For all $i \in \llbracket 1, p \rrbracket$,

$$
d\left(x, x^{\star}\right)_{i}=\varepsilon_{i} \geqslant \varepsilon_{i}^{-}
$$

with ε_{i}^{-}given by the intersection of the i-th lower bound constraint together with all the j-th upper bound constraints, for $j \neq i$.

Example

Enclosures obtained by the theorem:

$$
\begin{array}{ll}
\varepsilon_{1}^{-}=2.48 \cdot 10^{-3} & \varepsilon_{1}^{+}=2.90 \cdot 10^{-3} \\
\varepsilon_{2}^{-}=3.09 \cdot 10^{-3} & \varepsilon_{2}^{+}=3.65 \cdot 10^{-3}
\end{array}
$$

Example: Polynomial Equation in the Plane

Outline

1 Introduction

2 Multinorm Validation: a New Framework

3 A Posteriori Validation of Vector-Valued D-Finite Functions

4 Conclusion and Future Work

Chebyshev Polynomials and Series

$$
T_{0}(X)=1
$$

Chebyshev Polynomials and Series

$$
\begin{aligned}
& T_{0}(X)=1 \\
& T_{1}(X)=X
\end{aligned}
$$

Chebyshev Polynomials and Series

$\ldots+x^{0} \int_{0}^{+y}$

Chebyshev Family of Polynomials

$$
\begin{aligned}
T_{0}(X) & =1 \\
T_{1}(X) & =X \\
T_{n+2}(X) & =2 X T_{n+1}(X)-T_{n}(X)
\end{aligned}
$$

$$
\begin{aligned}
& T_{0}(X)=1 \\
& T_{1}(X)=X \\
& T_{2}(X)=2 X^{2}-1
\end{aligned}
$$

Chebyshev Polynomials and Series

$$
\begin{aligned}
& T_{0}(X)=1 \\
& T_{1}(X)=X \\
& T_{2}(X)=2 X^{2}-1 \\
& T_{3}(X)=4 X^{3}-3 X
\end{aligned}
$$

Chebyshev Polynomials and Series

Chebyshev Family of Polynomials

$$
\begin{aligned}
T_{0}(X) & =1 \\
T_{1}(X) & =X \\
T_{n+2}(X) & =2 X T_{n+1}(X)-T_{n}(X)
\end{aligned}
$$

$$
\begin{aligned}
& T_{0}(X)=1 \\
& T_{1}(X)=X \\
& T_{2}(X)=2 X^{2}-1 \\
& T_{3}(X)=4 X^{3}-3 X \\
& T_{4}(X)=8 X^{4}-8 X^{2}+1
\end{aligned}
$$

Chebyshev Polynomials and Series

$$
\begin{aligned}
& T_{0}(X)=1 \\
& T_{1}(X)=X \\
& T_{2}(X)=2 X^{2}-1 \\
& T_{3}(X)=4 X^{3}-3 X \\
& T_{4}(X)=8 X^{4}-8 X^{2}+1 \\
& T_{5}(X)=16 X^{5}-20 X^{3}+5 X
\end{aligned}
$$

Chebyshev Polynomials and Series

Chebyshev Family of Polynomials

$$
\begin{aligned}
T_{0}(X) & =1 \\
T_{1}(X) & =X \\
T_{n+2}(X) & =2 X T_{n+1}(X)-T_{n}(X)
\end{aligned}
$$

$$
\begin{aligned}
& T_{0}(X)=1 \\
& T_{1}(X)=X \\
& T_{2}(X)=2 X^{2}-1 \\
& T_{3}(X)=4 X^{3}-3 X \\
& T_{4}(X)=8 X^{4}-8 X^{2}+1 \\
& T_{5}(X)=16 X^{5}-20 X^{3}+5 X
\end{aligned}
$$

Chebyshev Polynomials and Series

Chebyshev Family of Polynomials

$$
\begin{aligned}
T_{0}(X) & =1 \\
T_{1}(X) & =X \\
T_{n+2}(X) & =2 X T_{n+1}(X)-T_{n}(X)
\end{aligned}
$$

$$
\begin{aligned}
& T_{0}(X)=1 \\
& T_{1}(X)=X \\
& T_{2}(X)=2 X^{2}-1 \\
& T_{3}(X)=4 X^{3}-3 X \\
& T_{4}(X)=8 X^{4}-8 X^{2}+1 \\
& T_{5}(X)=16 X^{5}-20 X^{3}+5 X
\end{aligned}
$$

Chebyshev Polynomials and Series

Scalar Product and Orthogonality Relations

Chebyshev Family of Polynomials

$$
\begin{aligned}
T_{0}(X) & =1 \\
T_{1}(X) & =X \\
T_{n+2}(X) & =2 X T_{n+1}(X)-T_{n}(X)
\end{aligned}
$$

$\langle f, g\rangle=\int_{-1}^{1} \frac{f(t) g(t)}{\sqrt{1-t^{2}}} \mathrm{~d} t=\int_{0}^{\pi} f(\cos \vartheta) g(\cos \vartheta) \mathrm{d} \vartheta$.
$\Rightarrow\left(T_{n}\right)_{n \geqslant 0}$ orthogonal family.

Trigonometric Relation

- $T_{n}(\cos \vartheta)=\cos n \vartheta$.
$\Rightarrow \forall t \in[-1,1],\left|T_{n}(t)\right| \leqslant 1$.

Multiplication and Integration

- $T_{n} T_{m}=\frac{1}{2}\left(T_{n+m}+T_{n-m}\right)$.
- $\int T_{n}=\frac{1}{2}\left(\frac{T_{n+1}}{n+1}-\frac{T_{n-1}}{n-1}\right)$.

Chebyshev Polynomials and Series

Scalar Product and Orthogonality Relations

Chebyshev Family of Polynomials

$$
\begin{aligned}
T_{0}(X) & =1 \\
T_{1}(X) & =X \\
T_{n+2}(X) & =2 X T_{n+1}(X)-T_{n}(X)
\end{aligned}
$$

Trigonometric Relation

$$
\square T_{n}(\cos \vartheta)=\cos n \vartheta
$$

$$
\Rightarrow \forall t \in[-1,1],\left|T_{n}(t)\right| \leqslant 1 .
$$

Multiplication and Integration

- $T_{n} T_{m}=\frac{1}{2}\left(T_{n+m}+T_{n-m}\right)$.
- $\int T_{n}=\frac{1}{2}\left(\frac{T_{n+1}}{n+1}-\frac{T_{n-1}}{n-1}\right)$.

$$
\langle f, g\rangle=\int_{-1}^{1} \frac{f(t) g(t)}{\sqrt{1-t^{2}}} \mathrm{~d} t=\int_{0}^{\pi} f(\cos \vartheta) g(\cos \vartheta) \mathrm{d} \vartheta
$$

$$
\Rightarrow\left(T_{n}\right)_{n \geqslant 0} \text { orthogonal family. }
$$

Chebyshev Coefficients and Series

$$
\begin{aligned}
& -a_{n}=\left\{\begin{array}{ll}
\frac{2}{\pi} \int_{0}^{\pi} f(\cos \vartheta) \mathrm{d} \vartheta & n=0 \\
\frac{1}{\pi} \int_{0}^{\pi} f(\cos \vartheta) \cos n \vartheta \mathrm{~d} \vartheta & n>0
\end{array} .\right. \\
& \widehat{f}^{[N]}(t)=\sum_{n \leqslant N} a_{n} T_{n}(t), \quad t \in[-1,1] .
\end{aligned}
$$

Chebyshev Polynomials and Series

Scalar Product and Orthogonality Relations

Chebyshev Family of Polynomials

$$
\begin{aligned}
T_{0}(X) & =1 \\
T_{1}(X) & =X, \\
T_{n+2}(X) & =2 X T_{n+1}(X)-T_{n}(X)
\end{aligned}
$$

Trigonometric Relation

$$
\begin{gathered}
\quad T_{n}(\cos \vartheta)=\cos n \vartheta . \\
\Rightarrow \forall t \in[-1,1],\left|T_{n}(t)\right| \leqslant 1 .
\end{gathered}
$$

Multiplication and Integration

- $T_{n} T_{m}=\frac{1}{2}\left(T_{n+m}+T_{n-m}\right)$.
- $\int T_{n}=\frac{1}{2}\left(\frac{T_{n+1}}{n+1}-\frac{T_{n-1}}{n-1}\right)$.
$\langle f, g\rangle=\int_{-1}^{1} \frac{f(t) g(t)}{\sqrt{1-t^{2}}} \mathrm{~d} t=\int_{0}^{\pi} f(\cos \vartheta) g(\cos \vartheta) \mathrm{d} \vartheta$.
$\Rightarrow\left(T_{n}\right)_{n \geqslant 0}$ orthogonal family.

Chebyshev Coefficients and Series

$$
\begin{aligned}
& -a_{n}= \begin{cases}\frac{2}{\pi} \int_{0}^{\pi} f(\cos \vartheta) \mathrm{d} \vartheta & n=0 \\
\frac{1}{\pi} \int_{0}^{\pi} f(\cos \vartheta) \cos n \vartheta \mathrm{~d} \vartheta & n>0\end{cases} \\
& -\widehat{f}^{[N]}(t)=\sum_{n \leqslant N} a_{n} T_{n}(t), \quad t \in[-1,1] .
\end{aligned} .
$$

Convergence Theorems

- If $f \in \mathcal{C}^{k}, \widehat{f}^{[N]} \rightarrow f$ in $O\left(N^{-k}\right)$.
- If f analytic, $\widehat{f}^{[N]} \rightarrow f$ exponentially fast.

Vector-Valued D-Finite Equations

Vector-Valued D-Finite Equation and Initial Value Problem

$$
\begin{gather*}
Y^{(r)}(t)+A_{r-1}(t) \cdot Y^{(r-1)}(t)+\cdots+A_{1}(t) \cdot Y^{\prime}(t)+A_{0}(t) \cdot Y(t)=G(t) \\
Y(-1)=v_{0} \quad Y^{\prime}(-1)=v_{1} \quad \ldots \quad Y^{(r-1)}(-1)=v_{r-1} \quad \in \mathbb{R}^{p} \tag{D}\\
t \in[-1,1] \quad A_{i} \in \mathbb{R}[t]^{p \times p}, G \in \mathbb{R}[t]^{p} .
\end{gather*}
$$

Vector-Valued D-Finite Equations

Vector-Valued D-Finite Equation and Initial Value Problem

$$
\begin{gather*}
Y^{(r)}(t)+A_{r-1}(t) \cdot Y^{(r-1)}(t)+\cdots+A_{1}(t) \cdot Y^{\prime}(t)+A_{0}(t) \cdot Y(t)=G(t) \\
Y(-1)=v_{0} \quad Y^{\prime}(-1)=v_{1} \quad \ldots \quad Y^{(r-1)}(-1)=v_{r-1} \quad \in \mathbb{R}^{p} \tag{D}\\
t \in[-1,1] \quad A_{i} \in \mathbb{R}[t]^{p \times p}, G \in \mathbb{R}[t]^{p} .
\end{gather*}
$$

Integral Equation with Polynomial Kernel

(D) becomes:

$$
Y(t)+\int_{-1}^{t}\left(\begin{array}{ccc}
K_{11}(t, s) & \ldots & K_{1 p}(t, s) \tag{I}\\
\vdots & \ddots & \vdots \\
K_{p 1}(t, s) & \ldots & K_{p p}(t, s)
\end{array}\right) \cdot Y(s) \mathrm{d} s=\Psi(t)
$$

- $\mathbf{K}_{i j} \cdot y(t)=\int_{-1}^{t} K_{i j}(t, s) y(s)$ ds 1-dimensional integral operator.

■ $\mathbf{K}=\left(\begin{array}{ccc}\mathbf{K}_{11} & \ldots & \mathbf{K}_{1 p} \\ \vdots & \ddots & \vdots \\ \mathbf{K}_{p 1} & \cdots & \mathbf{K}_{p p}\end{array}\right)$ p-dimensional integral operator.

Compactness and Almost-Banded Structure of K

$$
\mathbf{K}_{i j} \cdot \sum_{k \geqslant 0} c_{k} T_{k} \simeq
$$

$\mathbf{K}_{i j}$ is almost-banded and compact.

Compactness and Almost-Banded Structure of \mathbf{K}

truncated integral operator $\mathbf{K}_{i j}^{[N]}$.

Compactness and Almost-Banded Structure of \mathbf{K}

$$
\mathbf{K}^{[N]} \cdot\left(\begin{array}{c}
\sum_{k \geqslant 0} c_{1 k} T_{k} \\
\vdots \\
\sum_{k \geqslant 0} c_{p k} T_{k}
\end{array}\right) \simeq
$$

truncation $\mathbf{K}^{[N]}$ by blocks.

Compactness and Almost-Banded Structure of K

$$
\mathbf{K}^{[N]} .\left(\begin{array}{c}
\sum_{k \geqslant 0} c_{1 k} T_{k} \\
\vdots \\
\sum_{k \geqslant 0} c_{p k} T_{k}
\end{array}\right) \simeq
$$

$\mathbf{K}^{[N]}$ in reordered basis.

Example: Airy Function

- Airy function Ai defined by:

$$
y^{\prime \prime}-t y=0, \quad \mathrm{Ai}(0)=v_{0} \quad \text { and } \quad \mathrm{Ai}^{\prime}(0)=v_{1}
$$

Example: Airy Function

- Airy function Ai defined by:

$$
y^{\prime \prime}-t y=0, \quad \mathrm{Ai}(0)=v_{0} \quad \text { and } \quad \mathrm{Ai}^{\prime}(0)=v_{1}
$$

- Integral reformulation over $[-a, 0]$:

$$
Y(t)+\int_{-1}^{t}\left(\begin{array}{cc}
0 & -1 \\
s & 0
\end{array}\right) \cdot Y(s) \mathrm{d} s=\binom{v_{0}}{v_{1}} \Rightarrow Y^{\star}(t)=\binom{\operatorname{Ai}(t)}{\operatorname{Ai}^{\prime}(t)}
$$

Example: Airy Function

- Airy function Ai defined by:

$$
y^{\prime \prime}-t y=0, \quad \mathrm{Ai}(0)=v_{0} \quad \text { and } \quad \mathrm{Ai}^{\prime}(0)=v_{1}
$$

- Integral reformulation over $[-a, 0] \Rightarrow[-1,1]$:

$$
Y(t)+\int_{-1}^{t}\left(\begin{array}{cc}
0 & \frac{a}{2} \\
-\frac{a^{2}}{4}(s+1) & 0
\end{array}\right) \cdot Y(s) \mathrm{d} s=\binom{v_{0}}{v_{1}} \quad \Rightarrow \quad Y^{\star}(t)=\binom{\operatorname{Ai}\left(-\frac{a}{2}(t+1)\right)}{\operatorname{Ai}^{\prime}\left(-\frac{a}{2}(t+1)\right)} .
$$

Example: Airy Function

- Truncation at order $N=14$:

Example: Airy Function

- Obtained approximations for $a=10$:

$$
\begin{aligned}
Y_{1} & =+0.139 T_{0}-0.152 T_{1}+0.200 T_{2}-0.016 T_{3}-0.010 T_{4}+0.129 T_{5}-0.112 T_{6}-0.032 T_{7} \\
& +0.031 T_{8}-0.162 T_{9}-0.111 T_{10}+0.103 T_{11}+0.110 T_{12}-0.005 T_{13}-0.033 T_{14} \\
Y_{2} & =+0.057 T_{0}+0.130 T_{1}+0.052 T_{2}+0.290 T_{3}+0.033 T_{4}+0.273 T_{5}+0.291 T_{6}+0.004 T_{7} \\
& +0.203 T_{8}+0.104 T_{9}-0.380 T_{10}-0.340 T_{11}+0.073 T_{12}+0.187 T_{13}+0.044 T_{14}
\end{aligned}
$$

Example: Airy Function $\ldots+o^{0_{1}^{2}} \int_{0}^{+y}$

Example: Airy Function $\ldots+o^{0_{1}^{2}} \int_{0}^{+y}$

Designing the Newton-like Operator T

$\ldots+0 \lambda^{\circ} \int_{0_{0}^{+}}^{y}$

Construct T

- Truncation order N_{v}.
- Approx inverse:

$$
\mathbf{A} \approx\left(\mathbf{1}+\mathbf{K}^{\left[N_{v}\right]}\right)^{-1}
$$

Designing the Newton-like Operator \mathbf{T}

$\ldots+0 \lambda^{\circ} \int_{0_{0}^{+}}^{y}$

Construct T

- Truncation order N_{v}.
- Approx inverse:

$$
\mathbf{A} \approx\left(\mathbf{1}+\mathbf{K}^{\left[N_{v}\right]}\right)^{-1}
$$

Y^{1} Banach Space

- $\|y\|_{\mathrm{Y}^{1}}=\sum_{n \geqslant 0}\left|[y]_{n}\right| \geqslant\|y\|_{\infty}$.
- $\|\mathbf{F}\|_{\mathrm{Y}^{1}}=\sup _{n \geqslant 0}\left\|\mathbf{F} \cdot \boldsymbol{T}_{n}\right\|_{\mathrm{Y}^{1}}$ for $\mathbf{F}: \mathrm{Y}^{1} \rightarrow \mathrm{Y}^{1}$.

Designing the Newton-like Operator \mathbf{T}

$\ldots+0 \lambda^{\circ} \int_{0_{0}^{+}}^{y}$

Construct T

- Truncation order N_{v}.
- Approx inverse:

$$
\mathbf{A} \approx\left(\mathbf{1}+\mathbf{K}^{\left[N_{v}\right]}\right)^{-1}
$$

Y^{1} Banach Space

- $\|y\|_{\mathrm{Y}^{1}}=\sum_{n \geqslant 0}\left|[y]_{n}\right| \geqslant\|y\|_{\infty}$.
- $\|\mathbf{F}\|_{\mathrm{Y}^{1}}=\sup _{n \geqslant 0}\left\|\mathbf{F} \cdot \boldsymbol{T}_{n}\right\|_{\mathrm{Y}^{1}}$ for $\mathbf{F}: \mathrm{Y}^{1} \rightarrow \mathrm{Y}^{1}$.
- $\|Y\|_{\left(\mathrm{T}^{1}\right)^{p}} \in \mathbb{R}_{+}^{p}$ for $Y \in\left(\mathrm{Y}^{1}\right)^{p}$.
- $\|\mathbf{F}\|_{\left(\mathrm{U}^{1}\right)^{p}} \in \mathbb{R}_{+}^{p \times p}$ for $\mathbf{F}:\left(\mathrm{Y}^{1}\right)^{p} \rightarrow\left(\mathrm{Y}^{1}\right)^{p}$.

Designing the Newton-like Operator T

Construct T

- Truncation order N_{v}.
- Approx inverse:

$$
\mathbf{A} \approx\left(\mathbf{1}+\mathbf{K}^{\left[N_{v}\right]}\right)^{-1}
$$

Decomposition of the Operator Norm

$$
\begin{aligned}
& \|\mathrm{DT}\|_{\left(\mathrm{Y}^{1}\right)^{p}}=\|\mathbf{1}-\mathbf{A} \cdot(\mathbf{1}+\mathbf{K})\|_{\left(\mathrm{Y}^{1}\right)^{p}} \\
& \leqslant \underbrace{\left\|\mathbf{1}-\mathbf{A} \cdot\left(\mathbf{1}+\mathbf{K}^{\left[N_{\mathrm{V}}\right]}\right)\right\|_{\left(\mathrm{Y}^{1}\right)^{p}}}_{\text {Approximation error }}+\underbrace{\left\|\mathbf{A} \cdot\left(\mathbf{K}-\mathbf{K}^{\left[N_{v}\right]}\right)\right\|_{\left(\mathrm{Y}^{1}\right)^{p}}}_{\text {Truncation error }}
\end{aligned}
$$

Y^{1} Banach Space

- $\|y\|_{\mathrm{Y}^{1}}=\sum_{n \geqslant 0}\left|[y]_{n}\right| \geqslant\|y\|_{\infty}$.
- $\|\mathbf{F}\|_{\mathrm{Y}^{1}}=\sup _{n \geqslant 0}\left\|\mathbf{F} \cdot \boldsymbol{T}_{n}\right\|_{\mathrm{Y}^{1}}$ for $\mathbf{F}: \mathrm{Y}^{1} \rightarrow \mathrm{Y}^{1}$.
- $\|Y\|_{\left(\mathrm{T}^{1}\right)^{p}} \in \mathbb{R}_{+}^{p}$ for $Y \in\left(\mathrm{Y}^{1}\right)^{p}$.
- $\|\mathbf{F}\|_{\left(\mathrm{U}^{1}\right)^{p}} \in \mathbb{R}_{+}^{p \times p}$ for $\mathbf{F}:\left(\mathrm{Y}^{1}\right)^{p} \rightarrow\left(\mathrm{Y}^{1}\right)^{p}$.

Designing the Newton-like Operator \mathbf{T}

Construct T

- Truncation order N_{v}.
- Approx inverse:

$$
A \approx\left(1+K^{\left[N_{\nu}\right]}\right)^{-1}
$$

Decomposition of the Operator Norm

$$
\begin{aligned}
& \|\mathrm{DT}\|_{\left(\mathrm{U}^{1}\right)^{p}}=\|\mathbf{1}-\mathbf{A} \cdot(\mathbf{1}+\mathbf{K})\|_{\left(\mathrm{U}^{1}\right)^{p}} \\
& \leqslant \underbrace{\left\|\mathbf{1}-\mathbf{A} \cdot\left(\mathbf{1}+\mathbf{K}^{\left[N_{v}\right]}\right)\right\|_{\left(\mathrm{U}^{1}\right)^{p}}}_{\text {Approximation error }}+\underbrace{\left\|\mathbf{A} \cdot\left(\mathbf{K}-\mathbf{K}^{\left[N_{v}\right]}\right)\right\|_{\left(\mathrm{U}^{1}\right)^{p}}}_{\text {Truncation error }}
\end{aligned}
$$

Approximation error:

- Finite-dimensional problem.
- Matrix multiplications and Y^{1}-norm.

Y^{1} Banach Space

- $\|y\|_{\mathrm{Y}^{1}}=\sum_{n \geqslant 0}\left|[y]_{n}\right| \geqslant\|y\|_{\infty}$.
- $\|\mathbf{F}\|_{\mathrm{Y}^{1}}=\sup _{n \geqslant 0}\left\|\mathbf{F} \cdot \boldsymbol{T}_{n}\right\|_{\mathrm{Y}^{1}}$ for $\mathbf{F}: \mathrm{Y}^{1} \rightarrow \mathrm{Y}^{1}$.
- $\|Y\|_{\left(\mathrm{T}^{1}\right)^{p}} \in \mathbb{R}_{+}^{p}$ for $Y \in\left(\mathrm{Y}^{1}\right)^{p}$.
- $\|\mathbf{F}\|_{\left(\mathrm{U}^{1}\right)^{p}} \in \mathbb{R}_{+}^{p \times p}$ for $\mathbf{F}:\left(\mathrm{Y}^{1}\right)^{p} \rightarrow\left(\mathrm{Y}^{1}\right)^{p}$.

Designing the Newton-like Operator T

Decomposition of the Operator Norm

$$
\begin{aligned}
& \|\mathrm{DT}\|_{\left(\mathrm{U}^{1}\right)^{p}}=\|\mathbf{1}-\mathbf{A} \cdot(\mathbf{1}+\mathbf{K})\|_{\left(\mathrm{Y}^{1}\right)^{p}} \\
& \leqslant \underbrace{\left\|\mathbf{1}-\mathbf{A} \cdot\left(\mathbf{1}+\mathbf{K}^{\left[N_{v}\right]}\right)\right\|_{\left(\mathrm{U}^{1}\right)^{p}}}_{\text {Approximation error }}+\underbrace{\left\|\mathbf{A} \cdot\left(\mathbf{K}-\mathbf{K}^{\left[N_{v}\right]}\right)\right\|_{\left(\mathrm{Y}^{1}\right)^{p}}}_{\text {Truncation error }}
\end{aligned}
$$

Y^{1} Banach Space

- $\|y\|_{\mathrm{Y}^{1}}=\sum_{n \geqslant 0}\left|[y]_{n}\right| \geqslant\|y\|_{\infty}$.
- $\|\mathbf{F}\|_{\mathrm{Y}^{1}}=\sup _{n \geqslant 0}\left\|\mathbf{F} \cdot \boldsymbol{T}_{n}\right\|_{\mathrm{Y}^{1}}$ for $\mathbf{F}: \mathrm{Y}^{1} \rightarrow \mathrm{Y}^{1}$.
- $\|Y\|_{\left(\mathrm{T}^{1}\right)^{p}} \in \mathbb{R}_{+}^{p}$ for $Y \in\left(\mathrm{Y}^{1}\right)^{p}$.
- $\|\mathbf{F}\|_{\left(\mathrm{U}^{1}\right)^{p}} \in \mathbb{R}_{+}^{p \times p}$ for $\mathbf{F}:\left(\mathrm{Y}^{1}\right)^{p} \rightarrow\left(\mathrm{Y}^{1}\right)^{p}$.

Approximation error:

- Finite-dimensional problem.
- Matrix multiplications and Y^{1}-norm.

Truncation error:

- Infinite-dimensional problem.
- Crude bounds \Rightarrow large N_{v}.
- Smart bounding techniques.

Example: Airy Function

Validation with Newton-like Method

Rigorous Chebyshev Approximation - Summary
11 Integral reformulation,
© Numerical approximation Y of Y^{\star},
${ }_{3}$ Creating Newton-like operator \mathbf{T},
44 Computing $\Lambda \geqslant\|\mathrm{DT}\|_{\left(\mathrm{Y}^{1}\right)^{p} \text {, }}$
5. If $\rho(\Lambda)<1$, bound $\|Y-\mathbf{T} \cdot T\|_{\left(\mathrm{Y}^{1}\right)^{p}}$ and apply Perov theorem.

Example: Airy Function

Rigorous Chebyshev Approximation - Summary

Integral reformulation,
© Numerical approximation Y of Y^{\star},
${ }_{3}$ Creating Newton-like operator \mathbf{T},
4 Computing $\Lambda \geqslant\|\mathrm{DT}\|_{\left(\mathrm{U}^{1}\right)^{p}}$,
5. If $\rho(\Lambda)<1$, bound $\|Y-\mathbf{T} \cdot T\|_{\left(\mathrm{Y}^{1}\right)^{p}}$ and apply Perov theorem.

Example: Airy Function over [-10, 0]

- with $N_{v}=1000$:

$$
\Lambda=\left(\begin{array}{ll}
7.56 \cdot 10^{-4} & 8.71 \cdot 10^{-3} \\
3.92 \cdot 10^{-2} & 1.11 \cdot 10^{-2}
\end{array}\right)
$$

$$
\begin{aligned}
& \qquad \varepsilon_{1}^{-} \leqslant\left\|Y_{1}-\mathrm{Ai}\right\|_{\mathrm{Y}^{1}} \leqslant \varepsilon_{1}^{+} \text {and } \\
& \varepsilon_{2}^{-} \leqslant\left\|Y_{2}-\mathrm{Ai}^{\prime}\right\|_{\mathrm{Y}^{1}} \leqslant \varepsilon_{2}^{+} \text {with: } \\
& \varepsilon_{1}^{-}=0.109 \quad \varepsilon_{1}^{+}=0.115 \\
& \varepsilon_{2}^{-}=0.296 \\
& \varepsilon_{2}^{+}=0.312
\end{aligned}
$$

Example: Airy Function $\ldots+o^{\infty} \int_{0}^{+y}$
Error Tubes

Outline

1 Introduction

2. Multinorm Validation: a New Framework

3 A Posteriori Validation of Vector-Valued D-Finite Functions

4 Conclusion and Future Work

Conclusion and Future Work

- A general framework for multinorm validation.
- An algorithm for Rigorous Polynomial Approximations to vector-valued D-finite functions.
- Generalization to non-polynomial systems of linear ODEs.
- C library freely available at https://gforge.inria.fr/projects/tchebyapprox.
- Towards a certified Coq implementation.

Proof of Lower Bounds for Perov Theorem [Appendix]

Lower Bounds for Perov Theorem
If \mathbf{T} is Λ-Lipschitz with Λ convergent to zero, then for all $i \in \llbracket 1, p \rrbracket$:

$$
d\left(x, x^{\star}\right)_{i} \geqslant \varepsilon_{i}^{-}=\left(\left(\mathbf{1}-\mathbf{D}_{\mathbf{i}} \cdot \Lambda\right)^{-1} \cdot d(x, \mathbf{T} \cdot x)\right)_{i} \quad \text { with } \quad \mathbf{D}_{i}=\left(\begin{array}{llll}
1 & & \\
& & -1 & \\
& & & \\
& & & \\
&
\end{array}\right) .
$$

Sketch of the proof:

Proof of Lower Bounds for Perov Theorem [Appendix]

Lower Bounds for Perov Theorem

If \mathbf{T} is Λ-Lipschitz with \wedge convergent to zero, then for all $i \in \llbracket 1, p \rrbracket$:

$$
d\left(x, x^{\star}\right)_{i} \geqslant \varepsilon_{i}^{-}=\left(\left(\mathbf{1}-\mathbf{D}_{\mathbf{i}} \cdot \Lambda\right)^{-1} \cdot d(x, \mathbf{T} \cdot x)\right)_{i} \quad \text { with } \quad \mathbf{D}_{i}=\left(\begin{array}{llll}
1 & & \\
& & -1 & \\
& & & \\
& & & \\
&
\end{array}\right) .
$$

Sketch of the proof:

$1-\Lambda$

$$
\begin{aligned}
d & =\operatorname{det}(\mathbf{1}-\boldsymbol{\Lambda}) \\
d_{i} & =\operatorname{det}\left(\mathbf{1}-\mathbf{D}_{i} \cdot \boldsymbol{\Lambda}\right)
\end{aligned}
$$

$1-D_{i} \cdot \Lambda$

Proof of Lower Bounds for Perov Theorem [Appendix]

Lower Bounds for Perov Theorem

If \mathbf{T} is Λ-Lipschitz with \wedge convergent to zero, then for all $i \in \llbracket 1, p \rrbracket$:

$$
d\left(x, x^{\star}\right)_{i} \geqslant \varepsilon_{i}^{-}=\left(\left(\mathbf{1}-\mathbf{D}_{\mathbf{i}} \cdot \Lambda\right)^{-1} \cdot d(x, \mathbf{T} \cdot x)\right)_{i} \quad \text { with } \quad \mathbf{D}_{i}=\left(\begin{array}{llll}
1 & & \\
& & -1 & \\
& & & \\
& & & \\
&
\end{array}\right) .
$$

Sketch of the proof:

$$
\begin{aligned}
d & =\operatorname{det}(\mathbf{1}-\boldsymbol{\Lambda}) \\
d_{i} & =\operatorname{det}\left(\mathbf{1}-\mathbf{D}_{i} \cdot \boldsymbol{\Lambda}\right)
\end{aligned}
$$

Proof of Lower Bounds for Perov Theorem [Appendix]

Lower Bounds for Perov Theorem

If \mathbf{T} is Λ-Lipschitz with Λ convergent to zero, then for all $i \in \llbracket 1, p \rrbracket$:

$$
d\left(x, x^{\star}\right)_{i} \geqslant \varepsilon_{i}^{-}=\left(\left(\mathbf{1}-\mathbf{D}_{\mathbf{i}} \cdot \Lambda\right)^{-1} \cdot d(x, \mathbf{T} \cdot x)\right)_{i} \quad \text { with } \quad \mathbf{D}_{i}=\left(\begin{array}{llll}
1 & & \\
& & -1 & \\
& & & \\
& & & \\
&
\end{array}\right)
$$

Sketch of the proof:

$$
\begin{aligned}
d & =\operatorname{det}(\mathbf{1}-\boldsymbol{\Lambda}) \\
d_{i} & =\operatorname{det}\left(\mathbf{1}-\mathbf{D}_{i} \cdot \boldsymbol{\Lambda}\right)
\end{aligned}
$$

$$
d_{i}(\mathbf{1}-\Lambda)_{i 1}^{-1}=-d_{i}\left(\mathbf{1}-\mathbf{D}_{i} \cdot \Lambda\right)_{i 1}^{-1}
$$

Proof of Lower Bounds for Perov Theorem [Appendix]

Lower Bounds for Perov Theorem

If \mathbf{T} is Λ-Lipschitz with Λ convergent to zero, then for all $i \in \llbracket 1, p \rrbracket$:

$$
d\left(x, x^{\star}\right)_{i} \geqslant \varepsilon_{i}^{-}=\left(\left(\mathbf{1}-\mathbf{D}_{\mathbf{i}} \cdot \Lambda\right)^{-1} \cdot d(x, \mathbf{T} \cdot x)\right)_{i} \quad \text { with } \quad \mathbf{D}_{i}=\left(\begin{array}{llll}
1 & & \\
& & -1 & \\
& & & \\
& & & \\
&
\end{array}\right) .
$$

Sketch of the proof:

$$
\begin{aligned}
d & =\operatorname{det}(\mathbf{1}-\boldsymbol{\Lambda}) \\
d_{i} & =\operatorname{det}\left(\mathbf{1}-\mathbf{D}_{i} \cdot \boldsymbol{\Lambda}\right)
\end{aligned}
$$

$$
d_{i}(\mathbf{1}-\Lambda)_{i 1}^{-1}=-d_{i}\left(\mathbf{1}-\mathbf{D}_{i} \cdot \Lambda\right)_{i 1}^{-1}
$$

$$
d_{i}(\mathbf{1}-\Lambda)_{i 2}^{-1}=-d_{i}\left(\mathbf{1}-\mathbf{D}_{i} \cdot \Lambda\right)_{i 2}^{-1}
$$

Proof of Lower Bounds for Perov Theorem [Appendix]

Lower Bounds for Perov Theorem

If \mathbf{T} is Λ-Lipschitz with Λ convergent to zero, then for all $i \in \llbracket 1, p \rrbracket$:

$$
d\left(x, x^{\star}\right)_{i} \geqslant \varepsilon_{i}^{-}=\left(\left(\mathbf{1}-\mathbf{D}_{\mathbf{i}} \cdot \Lambda\right)^{-1} \cdot d(x, \mathbf{T} \cdot x)\right)_{i} \quad \text { with } \quad \mathbf{D}_{i}=\left(\begin{array}{llll}
1 & & \\
& & -1 & \\
& & & \\
& & & \\
&
\end{array}\right) .
$$

Sketch of the proof:

$$
\begin{aligned}
d & =\operatorname{det}(\mathbf{1}-\boldsymbol{\Lambda}) \\
d_{i} & =\operatorname{det}\left(\mathbf{1}-\mathbf{D}_{i} \cdot \boldsymbol{\Lambda}\right)
\end{aligned}
$$

$$
d_{i}(\mathbf{1}-\Lambda)_{i 1}^{-1}=-d_{i}\left(\mathbf{1}-\mathbf{D}_{i} \cdot \Lambda\right)_{i 1}^{-1}
$$

$$
d_{i}(\mathbf{1}-\Lambda)_{i 2}^{-1}=-d_{i}\left(\mathbf{1}-\mathbf{D}_{i} \cdot \Lambda\right)_{i 2}^{-1}
$$

$$
d_{i}(\mathbf{1}-\Lambda)_{i 3}^{-1}=+d_{i}\left(\mathbf{1}-\mathbf{D}_{i} \cdot \Lambda\right)_{i 3}^{-1}
$$

Proof of Lower Bounds for Perov Theorem [Appendix]

Lower Bounds for Perov Theorem

If \mathbf{T} is Λ-Lipschitz with \wedge convergent to zero, then for all $i \in \llbracket 1, p \rrbracket$:

$$
d\left(x, x^{\star}\right)_{i} \geqslant \varepsilon_{i}^{-}=\left(\left(\mathbf{1}-\mathbf{D}_{\mathbf{i}} \cdot \Lambda\right)^{-1} \cdot d(x, \mathbf{T} \cdot x)\right)_{i} \quad \text { with } \quad \mathbf{D}_{i}=\left(\begin{array}{llll}
1 & & \\
& & -1 & \\
& & & \\
& & & \\
&
\end{array}\right) .
$$

Sketch of the proof:

$$
\begin{aligned}
d & =\operatorname{det}(\mathbf{1}-\boldsymbol{\Lambda}) \\
d_{i} & =\operatorname{det}\left(\mathbf{1}-\mathbf{D}_{i} \cdot \boldsymbol{\Lambda}\right)
\end{aligned}
$$

$$
d_{i}(\mathbf{1}-\Lambda)_{i 1}^{-1}=-d_{i}\left(\mathbf{1}-\mathbf{D}_{i} \cdot \Lambda\right)_{i 1}^{-1}
$$

$$
d_{i}(\mathbf{1}-\Lambda)_{i 2}^{-1}=-d_{i}\left(\mathbf{1}-\mathbf{D}_{i} \cdot \Lambda\right)_{i 2}^{-1}
$$

$$
d_{i}(\mathbf{1}-\Lambda)_{i 3}^{-1}=+d_{i}\left(\mathbf{1}-\mathbf{D}_{i} \cdot \Lambda\right)_{i 3}^{-1}
$$

$$
d_{i}(\mathbf{1}-\Lambda)_{i 4}^{-1}=-d_{i}\left(\mathbf{1}-\mathbf{D}_{i} \cdot \Lambda\right)_{i 4}^{-1}
$$

Proof of Lower Bounds for Perov Theorem [Appendix]

Lower Bounds for Perov Theorem

If \mathbf{T} is Λ-Lipschitz with Λ convergent to zero, then for all $i \in \llbracket 1, p \rrbracket$:

$$
d\left(x, x^{\star}\right)_{i} \geqslant \varepsilon_{i}^{-}=\left(\left(\mathbf{1}-\mathbf{D}_{\mathbf{i}} \cdot \Lambda\right)^{-1} \cdot d(x, \mathbf{T} \cdot x)\right)_{i} \quad \text { with } \quad \mathbf{D}_{i}=\left(\begin{array}{llll}
1 & & \\
& & -1 & \\
& & & \\
& & & \\
&
\end{array}\right)
$$

Sketch of the proof:

- $\left(\mathbf{1}-\mathbf{D}_{i} \cdot \Lambda\right)_{i i}^{-1} \geqslant 0$, and

$$
\begin{aligned}
d & =\operatorname{det}(\mathbf{1}-\boldsymbol{\Lambda}) \\
d_{i} & =\operatorname{det}\left(\mathbf{1}-\mathbf{D}_{i} \cdot \boldsymbol{\Lambda}\right)
\end{aligned}
$$

- $\left(\mathbf{1}-\mathbf{D}_{i} \cdot \wedge\right)_{i j}^{-1} \leqslant 0$ for $j \neq i$.

$$
\begin{aligned}
& d_{i}(\mathbf{1}-\boldsymbol{\Lambda})_{i 1}^{-1}=-d_{i}\left(\mathbf{1}-\mathbf{D}_{i} \cdot \boldsymbol{\Lambda}\right)_{i 1}^{-1} \\
& d_{i}(\mathbf{1}-\Lambda)_{i 2}^{-1}=-d_{i}\left(\mathbf{1}-\mathbf{D}_{i} \cdot \boldsymbol{\Lambda}\right)_{i 2}^{-1} \\
& d_{i}(\mathbf{1}-\boldsymbol{\Lambda})_{i 3}^{-1}=+d_{i}\left(\mathbf{1}-\mathbf{D}_{i} \cdot \boldsymbol{\Lambda}\right)_{i 3}^{-1} \\
& d_{i}(\mathbf{1}-\boldsymbol{\Lambda})_{i 4}^{-1}=-d_{i}\left(\mathbf{1}-\mathbf{D}_{i} \cdot \boldsymbol{\Lambda}\right)_{i 4}^{-1}
\end{aligned}
$$

Proof of Lower Bounds for Perov Theorem [Appendix]

Lower Bounds for Perov Theorem

If \mathbf{T} is Λ-Lipschitz with \wedge convergent to zero, then for all $i \in \llbracket 1, p \rrbracket$:

$$
d\left(x, x^{\star}\right)_{i} \geqslant \varepsilon_{i}^{-}=\left(\left(\mathbf{1}-\mathbf{D}_{\mathbf{i}} \cdot \Lambda\right)^{-1} \cdot d(x, \mathbf{T} \cdot x)\right)_{i} \quad \text { with } \quad \mathbf{D}_{i}=\left(\begin{array}{llll}
1 & & \\
& & -1 & \\
& & & \\
& & & \\
&
\end{array}\right)
$$

Sketch of the proof:

- $\left(\mathbf{1}-\mathbf{D}_{i} \cdot \Lambda\right)_{i i}^{-1} \geqslant 0$, and

$$
\begin{aligned}
d & =\operatorname{det}(\mathbf{1}-\boldsymbol{\Lambda}) \\
d_{i} & =\operatorname{det}\left(\mathbf{1}-\mathbf{D}_{i} \cdot \boldsymbol{\Lambda}\right)
\end{aligned}
$$

- $\left(\mathbf{1}-\mathbf{D}_{i} \cdot \Lambda\right)_{i j}^{-1} \leqslant 0$ for $j \neq i$.

$$
\begin{aligned}
& d_{i}(\mathbf{1}-\Lambda)_{i 1}^{-1}=-d_{i}\left(\mathbf{1}-\mathbf{D}_{i} \cdot \Lambda\right)_{i 1}^{-1} \\
& d_{i}(\mathbf{1}-\Lambda)_{i 2}^{-1}=-d_{i}\left(\mathbf{1}-\mathbf{D}_{i} \cdot \Lambda\right)_{i 2}^{-1} \\
& d_{i}(\mathbf{1}-\Lambda)_{i 3}^{-1}=+d_{i}\left(\mathbf{1}-\mathbf{D}_{i} \cdot \Lambda\right)_{i 3}^{-1} \\
& d_{i}(\mathbf{1}-\Lambda)_{i 4}^{-1}=-d_{i}\left(\mathbf{1}-\mathbf{D}_{i} \cdot \boldsymbol{\Lambda}\right)_{i 4}^{-1}
\end{aligned}
$$

Proof of Lower Bounds for Perov Theorem [Appendix]

Recrso

Lower Bounds for Perov Theorem

If \mathbf{T} is Λ-Lipschitz with \wedge convergent to zero, then for all $i \in \llbracket 1, p \rrbracket$:

$$
d\left(x, x^{\star}\right)_{i} \geqslant \varepsilon_{i}^{-}=\left(\left(\mathbf{1}-\mathbf{D}_{\mathbf{i}} \cdot \Lambda\right)^{-1} \cdot d(x, \mathbf{T} \cdot x)\right)_{i} \quad \text { with } \quad \mathbf{D}_{i}=\left(\begin{array}{llll}
1 & & \\
& & -1 & \\
& & & \\
& & & \\
&
\end{array}\right)
$$

Sketch of the proof:

- $\left(\mathbf{1}-\mathbf{D}_{i} \cdot \Lambda\right)_{i i}^{-1} \geqslant 0$, and

$$
\begin{aligned}
d & =\operatorname{det}(\mathbf{1}-\boldsymbol{\Lambda}) \\
d_{i} & =\operatorname{det}\left(\mathbf{1}-\mathbf{D}_{i} \cdot \boldsymbol{\Lambda}\right)
\end{aligned}
$$

- $\left(\mathbf{1}-\mathbf{D}_{i} \cdot \Lambda\right)_{i j}^{-1} \leqslant 0$ for $j \neq i$.

$$
\Rightarrow \varepsilon_{i} \geqslant\left(\left(\mathbf{1}-\mathbf{D}_{i} \cdot \Lambda\right)^{-1} \cdot \eta\right)_{i} .
$$

$$
\begin{aligned}
& d_{i}(\mathbf{1}-\boldsymbol{\Lambda})_{i 1}^{-1}=-d_{i}\left(\mathbf{1}-\mathbf{D}_{i} \cdot \boldsymbol{\Lambda}\right)_{i 1}^{-1} \\
& d_{i}(\mathbf{1}-\Lambda)_{i 2}^{-1}=-d_{i}\left(\mathbf{1}-\mathbf{D}_{i} \cdot \boldsymbol{\Lambda}\right)_{i 2}^{-1} \\
& d_{i}(\mathbf{1}-\Lambda)_{i 3}^{-1}=+d_{i}\left(\mathbf{1}-\mathbf{D}_{i} \cdot \boldsymbol{\Lambda}\right)_{i 3}^{-1} \\
& d_{i}(\mathbf{1}-\boldsymbol{\Lambda})_{i 4}^{-1}=-d_{i}\left(\mathbf{1}-\mathbf{D}_{i} \cdot \boldsymbol{\Lambda}\right)_{i 4}^{-1}
\end{aligned}
$$

Tightness of Error Enclosures [Appendix]

- Overapproximation ratio:

$$
\begin{aligned}
& \frac{\varepsilon_{i}^{+}}{\varepsilon_{i}^{-}}=\frac{d^{\prime}}{d} \frac{c_{i} \eta_{i}+\sum_{j \neq i} c_{j} \eta_{j}}{c_{i} \eta_{i}-\sum_{j \neq i} c_{j} \eta_{j}}, \\
& c_{j}=(\mathbf{1}-\Lambda)_{i j}^{-1}, d=\operatorname{det}(\mathbf{1}-\Lambda), \\
& d^{\prime}=\operatorname{det}\left(\mathbf{1}-\mathbf{D}_{\mathbf{i}} \cdot \Lambda\right) .
\end{aligned}
$$

Tightness of Error Enclosures [Appendix]

- Overapproximation ratio:

$$
\begin{aligned}
& \quad \frac{\varepsilon_{i}^{+}}{\varepsilon_{i}^{-}}=\frac{d^{\prime}}{d} \frac{c_{i} \eta_{i}+\sum_{j \neq i} c_{j} \eta_{j}}{c_{i} \eta_{i}-\sum_{j \neq i} c_{j} \eta_{j}}, \\
& c_{j}=(\mathbf{1}-\Lambda)_{i j}^{-1}, d=\operatorname{det}(\mathbf{1}-\Lambda), \\
& d^{\prime}=\operatorname{det}\left(\mathbf{1}-\mathbf{D}_{\mathbf{i}} \cdot \Lambda\right) \\
& \\
& \quad \frac{\varepsilon_{i}^{+}}{\varepsilon_{i}^{-}} \leqslant \kappa \Leftrightarrow \\
& \quad \eta_{i} \geqslant \frac{\kappa d+d^{\prime}}{\kappa d-d^{\prime}} \frac{1}{c_{i}} \sum_{j \neq i} c_{j} \eta_{j}
\end{aligned}
$$

Tightness of Error Enclosures [Appendix]

$\ldots+0 \lambda^{\circ} \int_{0}^{+}{ }_{x}^{y}$

- Overapproximation ratio:

$$
\begin{aligned}
& \quad \frac{\varepsilon_{i}^{+}}{\varepsilon_{i}^{-}}=\frac{d^{\prime}}{d} \frac{c_{i} \eta_{i}+\sum_{j \neq i} c_{j} \eta_{j}}{c_{i} \eta_{i}-\sum_{j \neq i} c_{j} \eta_{j}}, \\
& c_{j}=(\mathbf{1}-\Lambda)_{i j}^{-1}, d=\operatorname{det}(\mathbf{1}-\Lambda), \\
& d^{\prime}=\operatorname{det}\left(\mathbf{1}-\mathbf{D}_{\mathbf{i}} \cdot \Lambda\right) \\
& \\
& \frac{\varepsilon_{i}^{+}}{\varepsilon_{i}^{-}} \leqslant \kappa \Leftrightarrow \\
& \quad \eta_{i} \geqslant \frac{\kappa d+d^{\prime}}{\kappa d-d^{\prime}} \frac{1}{c_{i}} \sum_{j \neq i} c_{j} \eta_{j}
\end{aligned}
$$

Tightness Cone

$$
\begin{gathered}
\mathcal{C}_{\kappa}= \\
\bigcap_{1 \leqslant i \leqslant p}\left\{\eta_{i} \geqslant \frac{\kappa d+d^{\prime}}{\kappa d-d^{\prime}} \frac{1}{c_{i}} \sum_{j \neq i} c_{j} \eta_{j}\right\}
\end{gathered}
$$

Tightness of Error Enclosures [Appendix]

- Overapproximation ratio:

$$
\frac{\varepsilon_{i}^{+}}{\varepsilon_{i}^{-}}=\frac{d^{\prime}}{d} \frac{c_{i} \eta_{i}+\sum_{j \neq i} c_{j} \eta_{j}}{c_{i} \eta_{i}-\sum_{j \neq i} c_{j} \eta_{j}}
$$

$c_{j}=(\mathbf{1}-\Lambda)_{i j}^{-1}, d=\operatorname{det}(\mathbf{1}-\Lambda)$,
$d^{\prime}=\operatorname{det}\left(\mathbf{1}-\mathbf{D}_{\mathbf{i}} \cdot \boldsymbol{\Lambda}\right)$.

- $\frac{\varepsilon_{i}^{+}}{\varepsilon_{i}^{-}} \leqslant \kappa \Leftrightarrow$

$$
\eta_{i} \geqslant \frac{\kappa d+d^{\prime}}{\kappa d-d^{\prime}} \frac{1}{c_{i}} \sum_{j \neq i} c_{j} \eta_{j}
$$

Tightness Cone

$$
\begin{gathered}
\mathcal{C}_{\kappa}= \\
\bigcap_{1 \leqslant i \leqslant p}\left\{\eta_{i} \geqslant \frac{\kappa d+d^{\prime}}{\kappa d-d^{\prime}} \frac{1}{c_{i}} \sum_{j \neq i} c_{j} \eta_{j}\right\}
\end{gathered}
$$

Tightness of Error Enclosures [Appendix]

- Overapproximation ratio:

$$
\frac{\varepsilon_{i}^{+}}{\varepsilon_{i}^{-}}=\frac{d^{\prime}}{d} \frac{c_{i} \eta_{i}+\sum_{j \neq i} c_{j} \eta_{j}}{c_{i} \eta_{i}-\sum_{j \neq i} c_{j} \eta_{j}}
$$

$c_{j}=(\mathbf{1}-\Lambda)_{i j}^{-1}, d=\operatorname{det}(\mathbf{1}-\Lambda)$,
$d^{\prime}=\operatorname{det}\left(\mathbf{1}-\mathbf{D}_{\mathbf{i}} \cdot \boldsymbol{\Lambda}\right)$.

- $\frac{\varepsilon_{i}^{+}}{\varepsilon_{i}^{-}} \leqslant \kappa \Leftrightarrow$

$$
\eta_{i} \geqslant \frac{\kappa d+d^{\prime}}{\kappa d-d^{\prime}} \frac{1}{c_{i}} \sum_{j \neq i} c_{j} \eta_{j}
$$

Tightness Cone

$$
\begin{gathered}
\mathcal{C}_{\kappa}= \\
\bigcap_{1 \leqslant i \leqslant p}\left\{\eta_{i} \geqslant \frac{\kappa d+d^{\prime}}{\kappa d-d^{\prime}} \frac{1}{c_{i}} \sum_{j \neq i} c_{j} \eta_{j}\right\}
\end{gathered}
$$

Tightness of Error Enclosures [Appendix]

- Overapproximation ratio:

$$
\frac{\varepsilon_{i}^{+}}{\varepsilon_{i}^{-}}=\frac{d^{\prime}}{d} \frac{c_{i} \eta_{i}+\sum_{j \neq i} c_{j} \eta_{j}}{c_{i} \eta_{i}-\sum_{j \neq i} c_{j} \eta_{j}}
$$

$c_{j}=(\mathbf{1}-\Lambda)_{i j}^{-1}, d=\operatorname{det}(\mathbf{1}-\Lambda)$,
$d^{\prime}=\operatorname{det}\left(\mathbf{1}-\mathbf{D}_{\mathbf{i}} \cdot \boldsymbol{\Lambda}\right)$.

- $\frac{\varepsilon_{i}^{+}}{\varepsilon_{i}^{-}} \leqslant \kappa \Leftrightarrow$

$$
\eta_{i} \geqslant \frac{\kappa d+d^{\prime}}{\kappa d-d^{\prime}} \frac{1}{c_{i}} \sum_{j \neq i} c_{j} \eta_{j}
$$

Tightness Cone

$$
\begin{gathered}
\mathcal{C}_{\kappa}= \\
\bigcap_{1 \leqslant i \leqslant p}\left\{\eta_{i} \geqslant \frac{\kappa d+d^{\prime}}{\kappa d-d^{\prime}} \frac{1}{c_{i}} \sum_{j \neq i} c_{j} \eta_{j}\right\}
\end{gathered}
$$

Tightness of Error Enclosures [Appendix]

- Overapproximation ratio:

$$
\frac{\varepsilon_{i}^{+}}{\varepsilon_{i}^{-}}=\frac{d^{\prime}}{d} \frac{c_{i} \eta_{i}+\sum_{j \neq i} c_{j} \eta_{j}}{c_{i} \eta_{i}-\sum_{j \neq i} c_{j} \eta_{j}}
$$

$c_{j}=(\mathbf{1}-\Lambda)_{i j}^{-1}, d=\operatorname{det}(\mathbf{1}-\Lambda)$,
$d^{\prime}=\operatorname{det}\left(\mathbf{1}-\mathbf{D}_{\mathbf{i}} \cdot \boldsymbol{\Lambda}\right)$.

- $\frac{\varepsilon_{i}^{+}}{\varepsilon_{i}^{-}} \leqslant \kappa \Leftrightarrow$

$$
\eta_{i} \geqslant \frac{\kappa d+d^{\prime}}{\kappa d-d^{\prime}} \frac{1}{c_{i}} \sum_{j \neq i} c_{j} \eta_{j}
$$

Tightness Cone

$$
\begin{gathered}
\mathcal{C}_{\kappa}= \\
\bigcap_{1 \leqslant i \leqslant p}\left\{\eta_{i} \geqslant \frac{\kappa d+d^{\prime}}{\kappa d-d^{\prime}} \frac{1}{c_{i}} \sum_{j \neq i} c_{j} \eta_{j}\right\}
\end{gathered}
$$

Tightness of Error Enclosures [Appendix]

- Overapproximation ratio:

$$
\frac{\varepsilon_{i}^{+}}{\varepsilon_{i}^{-}}=\frac{d^{\prime}}{d} \frac{c_{i} \eta_{i}+\sum_{j \neq i} c_{j} \eta_{j}}{c_{i} \eta_{i}-\sum_{j \neq i} c_{j} \eta_{j}}
$$

$$
c_{j}=(\mathbf{1}-\Lambda)_{i j}^{-1}, d=\operatorname{det}(\mathbf{1}-\Lambda)
$$

$$
d^{\prime}=\operatorname{det}\left(\mathbf{1}-\mathbf{D}_{\mathbf{i}} \cdot \boldsymbol{\Lambda}\right)
$$

- $\frac{\varepsilon_{i}^{+}}{\varepsilon_{i}^{-}} \leqslant \kappa \Leftrightarrow$

$$
\eta_{i} \geqslant \frac{\kappa d+d^{\prime}}{\kappa d-d^{\prime}} \frac{1}{c_{i}} \sum_{j \neq i} c_{j} \eta_{j}
$$

Tightness of Error Enclosures [Appendix]

- Overapproximation ratio:

$$
\frac{\varepsilon_{i}^{+}}{\varepsilon_{i}^{-}}=\frac{d^{\prime}}{d} \frac{c_{i} \eta_{i}+\sum_{j \neq i} c_{j} \eta_{j}}{c_{i} \eta_{i}-\sum_{j \neq i} c_{j} \eta_{j}}
$$

$$
c_{j}=(\mathbf{1}-\Lambda)_{i j}^{-1}, d=\operatorname{det}(\mathbf{1}-\Lambda)
$$

$$
d^{\prime}=\operatorname{det}\left(\mathbf{1}-\mathbf{D}_{\mathbf{i}} \cdot \boldsymbol{\Lambda}\right)
$$

- $\frac{\varepsilon_{i}^{+}}{\varepsilon_{i}^{-}} \leqslant \kappa \Leftrightarrow$

$$
\eta_{i} \geqslant \frac{\kappa d+d^{\prime}}{\kappa d-d^{\prime}} \frac{1}{c_{i}} \sum_{j \neq i} c_{j} \eta_{j}
$$

Tightness of Error Enclosures [Appendix]

- Overapproximation ratio:

$$
\frac{\varepsilon_{i}^{+}}{\varepsilon_{i}^{-}}=\frac{d^{\prime}}{d} \frac{c_{i} \eta_{i}+\sum_{j \neq i} c_{j} \eta_{j}}{c_{i} \eta_{i}-\sum_{j \neq i} c_{j} \eta_{j}}
$$

$$
c_{j}=(\mathbf{1}-\Lambda)_{i j}^{-1}, d=\operatorname{det}(\mathbf{1}-\Lambda)
$$

$$
d^{\prime}=\operatorname{det}\left(\mathbf{1}-\mathbf{D}_{\mathbf{i}} \cdot \boldsymbol{\Lambda}\right)
$$

- $\frac{\varepsilon_{i}^{+}}{\varepsilon_{i}^{-}} \leqslant \kappa \Leftrightarrow$

$$
\eta_{i} \geqslant \frac{\kappa d+d^{\prime}}{\kappa d-d^{\prime}} \frac{1}{c_{i}} \sum_{j \neq i} c_{j} \eta_{j}
$$

Tightness of Error Enclosures [Appendix]

- Overapproximation ratio:

$$
\begin{aligned}
& \quad \frac{\varepsilon_{i}^{+}}{\varepsilon_{i}^{-}}=\frac{d^{\prime}}{d} \frac{c_{i} \eta_{i}+\sum_{j \neq i} c_{j} \eta_{j}}{c_{i} \eta_{i}-\sum_{j \neq i} c_{j} \eta_{j}}, \\
& c_{j}=(\mathbf{1}-\Lambda)_{i j}^{-1}, d=\operatorname{det}(\mathbf{1}-\Lambda), \\
& d^{\prime}=\operatorname{det}\left(\mathbf{1}-\mathbf{D}_{\mathbf{i}} \cdot \Lambda\right) \\
& \\
& \frac{\varepsilon_{i}^{+}}{\varepsilon_{i}^{-}} \leqslant \kappa \Leftrightarrow \\
& \quad \eta_{i} \geqslant \frac{\kappa d+d^{\prime}}{\kappa d-d^{\prime}} \frac{1}{c_{i}} \sum_{j \neq i} c_{j} \eta_{j}
\end{aligned}
$$

Tightness Cone

$$
\begin{aligned}
& \mathcal{C}_{\kappa}= \\
& \bigcap_{1 \leqslant i \leqslant p}\left\{\eta_{i} \geqslant \frac{\kappa d+d^{\prime}}{\kappa d-d^{\prime}} \frac{1}{c_{i}} \sum_{j \neq i} c_{j} \eta_{j}\right\}
\end{aligned}
$$

Designing the Newton-like Operator \mathbf{T}

Bounding the Truncation Error

Truncation Error
$\left\|\mathbf{A} \cdot\left(\mathbf{K}-\mathbf{K}^{\left[N_{v}\right]}\right)\right\|=\sup _{i \geqslant 0}\left\|\mathbf{A} \cdot\left(\mathbf{K}-\mathbf{K}^{\left[N_{v}\right]}\right) \cdot \boldsymbol{T}_{i}\right\|$

Designing the Newton-like Operator \mathbf{T}

Truncation Error

$$
\left\|\mathbf{A} \cdot\left(\mathbf{K}-\mathbf{K}^{\left[N_{v}\right]}\right)\right\|=\sup _{i \geqslant 0}\left\|\mathbf{A} \cdot\left(\mathbf{K}-\mathbf{K}^{\left[N_{v}\right]}\right) \cdot T_{i}\right\|
$$

K

Designing the Newton-like Operator \mathbf{T}

Bounding the Truncation Error

Truncation Error

$$
\left\|\mathbf{A} \cdot\left(\mathbf{K}-\mathbf{K}^{\left[N_{v}\right]}\right)\right\|=\sup _{i \geqslant 0}\left\|\mathbf{A} \cdot\left(\mathbf{K}-\mathbf{K}^{\left[N_{v}\right]}\right) \cdot \boldsymbol{T}_{i}\right\|
$$

$$
\mathbf{K}-\mathbf{K}^{[N]}
$$

Designing the Newton-like Operator \mathbf{T}

Bounding the Truncation Error

Truncation Error

$$
\left\|\mathbf{A} \cdot\left(\mathbf{K}-\mathbf{K}^{\left[N_{v}\right]}\right)\right\|=\sup _{i \geqslant 0}\left\|\mathbf{A} \cdot\left(\mathbf{K}-\mathbf{K}^{\left[N_{v}\right]}\right) \cdot T_{i}\right\|
$$

A

$\mathbf{K}-\mathbf{K}^{[N]}$

Designing the Newton-like Operator \mathbf{T}

Bounding the Truncation Error

Truncation Error

$$
\left\|\mathbf{A} \cdot\left(\mathbf{K}-\mathbf{K}^{\left[N_{v}\right]}\right)\right\|=\sup _{i \geqslant 0}\left\|\mathbf{A} \cdot\left(\mathbf{K}-\mathbf{K}^{\left[N_{v}\right]}\right) \cdot \boldsymbol{T}_{i}\right\|
$$

A

$\mathbf{K}-\mathbf{K}^{[N]}$

Designing the Newton-like Operator \mathbf{T}

Bounding the Truncation Error

Truncation Error

$$
\left\|\mathbf{A} \cdot\left(\mathbf{K}-\mathbf{K}^{\left[N_{v}\right]}\right)\right\|=\sup _{i \geqslant 0}\left\|\mathbf{A} \cdot\left(\mathbf{K}-\mathbf{K}^{\left[N_{v}\right]}\right) \cdot \boldsymbol{T}_{i}\right\|
$$

I Direct computation.

A

$\mathbf{K}-\mathbf{K}^{[N]}$

Designing the Newton-like Operator \mathbf{T}

Bounding the Truncation Error

Truncation Error

$$
\left\|\mathbf{A} \cdot\left(\mathbf{K}-\mathbf{K}^{\left[N_{v}\right]}\right)\right\|=\sup _{i \geqslant 0}\left\|\mathbf{A} \cdot\left(\mathbf{K}-\mathbf{K}^{\left[N_{v}\right]}\right) \cdot \boldsymbol{T}_{i}\right\|
$$

A

$\mathbf{K}-\mathbf{K}^{[N]}$

1 Direct computation.
2 Direct computation.

Designing the Newton-like Operator \mathbf{T}

Bounding the Truncation Error

Truncation Error

$$
\left\|\mathbf{A} \cdot\left(\mathbf{K}-\mathbf{K}^{\left[N_{v}\right]}\right)\right\|=\sup _{i \geqslant 0}\left\|\mathbf{A} \cdot\left(\mathbf{K}-\mathbf{K}^{\left[N_{v}\right]}\right) \cdot \boldsymbol{T}_{i}\right\|
$$

A

$\mathbf{K}-\mathbf{K}^{[N]}$

1 Direct computation.
[Direct computation.
3 Bound the remaining infinite number of columns:

Designing the Newton-like Operator \mathbf{T}

Truncation Error

$$
\left\|\mathbf{A} \cdot\left(\mathbf{K}-\mathbf{K}^{\left[N_{v}\right]}\right)\right\|=\sup _{i \geqslant 0}\left\|\mathbf{A} \cdot\left(\mathbf{K}-\mathbf{K}^{\left[N_{v}\right]}\right) \cdot \boldsymbol{T}_{i}\right\|
$$

A

$\mathbf{K}-\mathbf{K}^{[N]}$

1 Direct computation.
■ Direct computation.
3 Bound the remaining infinite number of columns:

- Using the bounds in $1 / i$ and $1 / i^{2}$: possibly large overestimations.

$$
\operatorname{diag}(i) \leqslant \frac{C}{i} \quad \operatorname{init}(i) \leqslant \frac{D}{i^{2}}
$$

Designing the Newton-like Operator \mathbf{T}

Truncation Error

$$
\left\|\mathbf{A} \cdot\left(\mathbf{K}-\mathbf{K}^{\left[N_{v}\right]}\right)\right\|=\sup _{i \geqslant 0}\left\|\mathbf{A} \cdot\left(\mathbf{K}-\mathbf{K}^{\left[N_{v}\right]}\right) \cdot \boldsymbol{T}_{i}\right\|
$$

A

$\mathbf{K}-\mathbf{K}^{[N]}$

1 Direct computation.
[Direct computation.
3 Bound the remaining infinite number of columns:

- Using the bounds in $1 / i$ and $1 / i^{2}$: possibly large overestimations.

$$
\operatorname{diag}(i) \leqslant \frac{C}{i} \quad \operatorname{init}(i) \leqslant \frac{D}{i^{2}}
$$

- Using a first order difference method: differences in $1 / i^{2}$ and $1 / i^{4}$.

$$
\begin{aligned}
\operatorname{diag}(i) & \leqslant \operatorname{diag}\left(i_{0}\right)+\frac{C^{\prime}}{i^{2}} \\
\operatorname{init}(i) & \leqslant \operatorname{init}\left(i_{0}\right)+\frac{D^{\prime}}{i^{4}}
\end{aligned}
$$

Designing the Newton-like Operator \mathbf{T}

Truncation Error

$$
\left\|\mathbf{A} \cdot\left(\mathbf{K}-\mathbf{K}^{\left[N_{v}\right]}\right)\right\|=\sup _{i \geqslant 0}\left\|\mathbf{A} \cdot\left(\mathbf{K}-\mathbf{K}^{\left[N_{v}\right]}\right) \cdot \boldsymbol{T}_{i}\right\|
$$

A

$\mathbf{K}-\mathbf{K}^{[N]}$

1 Direct computation.
[Direct computation.
3 Bound the remaining infinite number of columns:

- Using the bounds in $1 / i$ and $1 / i^{2}$: possibly large overestimations.

$$
\operatorname{diag}(i) \leqslant \frac{C}{i} \quad \operatorname{init}(i) \leqslant \frac{D}{i^{2}}
$$

- Using a first order difference method: differences in $1 / i^{2}$ and $1 / i^{4}$.

$$
\begin{aligned}
\operatorname{diag}(i) & \leqslant \operatorname{diag}\left(i_{0}\right)+\frac{C^{\prime}}{i^{2}} \\
\operatorname{init}(i) & \leqslant \operatorname{init}\left(i_{0}\right)+\frac{D^{\prime}}{i^{4}}
\end{aligned}
$$

