A Symbolic Approach for Solving Algebraic Riccati Equations

G. Rance, Y. Bouzidi, AI. Quadrat, Ar. Quadrat
Journées Nationales de Calcul Formel

Monday, January $22^{\text {th }} 2018$

SSAFRAN

Overview

1 Algebraic Riccati Equations for the optimal control problem

2 A new algebraic description

3 The case of 3 order systems

4 A practical example

5 Conclusion and perspectives

Overview

1 Algebraic Riccati Equations for the optimal control problem

2 A new algebraic description

3 The case of 3 order systems

4 A practical example

5 Conclusion and perspectives

The linear optimal control problem

Input : a linear dynamical system

$$
\left\{\begin{array}{l}
\dot{x}(t)=A x(t)+B u(t) \\
x(0)=x_{0}
\end{array}\right.
$$

where
$x(t) \in \mathbb{R}^{n}$ the state vector, $u(t) \in \mathbb{R}^{m}$ the control vector
$A($ resp. $B)$ is an $n \times n($ resp. $n \times m)$ real matrix
Output : a control u that stabilizes the system and minimizes a quadratic cost functional

$$
\frac{1}{2} \int_{0}^{+\infty}\left[x(t)^{T} Q x(t)+u(t)^{T} R u(t)\right] d t
$$

where $Q($ resp. R) is a positive semi-definite (resp. positive definite) symmetric real matrix.

Goal : Achieve a control reference using the minimum energy

Optimal control : mathematical simplifications

Let introduce the Lagrange multiplier $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and the following functional

$$
\frac{1}{2} \int_{0}^{+\infty}\left[x(t)^{T} Q x(t)+u(t)^{T} R u(t)-\lambda(t)(\dot{x}(t)-A x(t)-B u(t))\right] d t
$$

By a variation computation, the problem is reduced to solving the following OD systems

$$
\left\{\begin{array} { l }
{ \dot { \lambda } (t) ^ { T } + A ^ { T } \lambda (t) ^ { T } + Q x (t) = 0 , } \\
{ \dot { x } (t) - A x (t) - B u (t) = 0 , } \\
{ R u (t) + B ^ { T } \lambda (t) ^ { T } = 0 . }
\end{array} \quad \xrightarrow { u = - R ^ { - 1 } B ^ { T } \lambda (t) ^ { T } } \quad \left\{\begin{array}{l}
\dot{x}(t)=A x(t)-B R^{-1} B^{T} \lambda(t)^{T}, \\
\dot{\lambda}(t)^{T}=-Q x(t)-A^{T} \lambda(t)^{T} .
\end{array}\right.\right.
$$

If we seek for a solution of the form $\lambda(t)^{T}=P(t) \times(t), P(t)$ must satisfy the differential equation

$$
\dot{P}=A P+A^{T} P+P B R^{-1} B^{T} P^{T}+Q
$$

If we consider a constant matrix P, this yields the following algebraic equation

$$
A P+A^{T} P+P B R^{-1} B^{T} P^{T}+Q=0
$$

The optimal control is then given as $u(t)=-R^{-1} B^{T} P \times(t)$

Algebraic Riccati Equations

An Algebraic Riccati Equation is the following quadratic matrix equation

$$
\begin{equation*}
A^{T} X+X A+X B R^{-1} B^{T} X+Q=0 \tag{1}
\end{equation*}
$$

where A is a real $n \times n$ matrix and Q, R are real symmetric $n \times n$ matrices

Solving Algebraic Riccati Equations

- Computing all the solutions X of (1)
- Computing specific solutions of (1) : real, hermitian, positive definite...
- A positive definite solution is stabilizing

Algebraic Riccati Equations are fundamental in many linear control theory problems (Estimation, Filtering, Robust control,...)

Riccati Equations and invariant subspaces

Solutions of (1) can be constructed in term of the invariant subspaces of the following $2 n \times 2 n$ Hamiltonian matrix

$$
\mathscr{H}:=\left(\begin{array}{cc}
A & -B R^{-1} B^{T} \\
-Q & -A^{T}
\end{array}\right)
$$

Theorem [Zhou et al. (1996)]
Let $\mathcal{V} \subset \mathbb{C}^{2 n}$ be an n-dimensional invariant subspace of \mathscr{H} and let $X_{1}, X_{2} \in \mathbb{C}^{n \times n}$ be two complex matrices such that

$$
\mathcal{V}=\operatorname{Im}\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]
$$

If X_{1} is invertible, then $X:=X_{2} X_{1}^{-1}$ is a solution of the Riccati Equation (1).

Invariant subspaces can be obtained via eigenvalues and eigenvectors computation

The spectral factorization problem

The spectrum of \mathscr{H} is symmetric with respect to the real and imaginary axis
If we consider the characteristic polynomial of \mathscr{H}

$$
f(\lambda)=\operatorname{det}\left(\mathscr{H}-\lambda I_{2 n}\right)
$$

Then

$$
f(\lambda)=f(-\lambda)
$$

Invariant subspaces can be obtained by computing factorizations of the form

$$
f(\lambda)=g(\lambda) g(-\lambda)
$$

where $g(\lambda) \in \mathbb{C}[\lambda]$
This problem is known as the spectral factorization problem

The problem under consideration

$n^{\text {th }}$ order Single Input (u) Single Output (y) systems

$$
\left\{\begin{array}{l}
\dot{x}=A x+B u \\
y=C x
\end{array}\right.
$$

$A:=\left(\begin{array}{ccccc}0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & 0 & \cdots & 0 & 1 \\ -a_{0} & -a_{1} & \cdots & -a_{n-2} & -a_{n-1}\end{array}\right)$

$$
\begin{gathered}
B:=\left(\begin{array}{llll}
0 & \ldots & 0 & 1
\end{array}\right)^{T} \\
C
\end{gathered}:=\left(\begin{array}{lll}
c_{0} & \ldots & c_{n-1}
\end{array}\right) .
$$

where $a:=\left(a_{0}, \cdots, a_{n-1}\right), c:=\left(c_{0}, \cdots, c_{n-1}\right)$ are unknown parameters.
Goal : Compute a closed loop control u that stabilizes y and minimizes

$$
\frac{1}{2} \int_{0}^{+\infty}\left[y(t)^{2}+u(t)^{2}\right] d t
$$

This control will depend on the parameters a,c \rightsquigarrow observe the effect of parameters on the optimization problem!

The problem under consideration

This yields the following Algebraic Riccati Equation

$$
\begin{equation*}
\mathscr{R}:=X A+A^{T} X-X B B^{T} X+C^{T} C=0 \tag{2}
\end{equation*}
$$

where X is a symmetric matrix

Theorem [Zhou et al. (1996)]
If the pair (A, C) is observable, then

- The positive definite solution X of (2) is unique
- The positive definite solution X of (2) is a stabilizing solution

Goal : Compute the positive definite solution of (2)

Overview

1 Algebraic Riccati Equations for the optimal control problem

2 A new algebraic description

3 The case of 3 order systems

4 A practical example

5 Conclusion and perspectives

Algebraic description

$\mathscr{R}=0 \Leftrightarrow \frac{n(n+1)}{2}$ polynomial equations of $\frac{n(n+1)}{2}$ unknowns
Noting $X=\left(x_{i, j}\right)$ then $\frac{n(n-1)}{2}$ elements of \mathscr{R} yields

$$
x_{i, j}=x_{i-1, j+1}+f\left(a_{k}, c_{k}, x_{k, n} \mid k=1 \cdots n\right)
$$

Recursion $\rightarrow x_{i, j}=f\left(a_{k}, c_{k}, x_{k, n} \mid k=1 \cdots n\right)$
Two halting conditions :

- Strictly above the anti-diagonal \rightarrow First row
- Below the anti-diagonal \rightarrow Last column

Algebraic description

For $k=1 \ldots n$, we set $x_{k, 0}=x_{0, k}:=0$, and for $(i, j) \in \mathbb{N}^{2}$, we define :

$$
\left\{\begin{array}{lc}
N(i, j):=i-1, \quad 2 \leq i+j \leq n+1 & \text { (stly. above anti-diag.) } \\
N(i, j):=n-j+1, \quad n+1<i+j \leq 2 n+1 & \text { (below anti-diag.) }
\end{array}\right.
$$

The elements of X solution of $\mathscr{R}=0$ are determined only by the b_{k} 's

$$
\begin{aligned}
& \left.x_{k, n}=b_{k-1}-a_{k-1} \quad \text { (last column of } X\right) \\
& x_{i, j-1}=\sum_{k=0}^{N(i, j)}(-1)^{k} b_{i-1-k} b_{j-1+k}-\theta_{N(i, j)}
\end{aligned}
$$

where $1 \leq k \leq n, 1 \leq i<j \leq n$, and θ_{m} is defined by:

$$
\theta_{m}:=\sum_{k=0}^{m}(-1)^{k}\left(a_{i-1-k} a_{j-1+k}+c_{i-1-k} c_{j-1+k}\right)
$$

The number of variables is now equal to n

A new polynomial system

Polynomial system of n equations in b_{k}

$$
\mathcal{B}:=\left\{\begin{array}{l}
\mathcal{B}_{0}:=b_{0}^{2}-d_{0}=0, \\
\mathcal{B}_{k}:=b_{k}^{2}+2 \sum_{m=1}^{M(k)}(-1)^{m} b_{k-m} b_{k+m}-d_{2 k}=0, \quad 1 \leq k \leq n-1
\end{array}\right.
$$

where the constants $d_{2 k}$ are defined by

$$
\left\{\begin{array}{l}
d_{0}:=a_{0}^{2}+c_{0}^{2} \\
d_{2 k}:=2 \sum_{m=1}^{M(k)}(-1)^{m}\left(a_{k-m} a_{k+m}+c_{k-m} c_{k+m}\right)+a_{k}^{2}+c_{k}^{2}, \\
d_{2 n}:=1
\end{array}\right.
$$

Theorem - [Rance et al. (2016)]
The polynomial system $\mathcal{B}=\left\{\mathcal{B}_{0}, \cdots, \mathcal{B}_{n-1}\right\}$

- is a reduced Gröbner basis of the ideal $\langle\mathcal{B}\rangle$ w.r.t. the DRL order $b_{n-1} \succ \ldots \succ b_{0}$
- has generically 2^{n} distinct complex solutions

Relation with the spectral factorization

Find the solutions via invariant spaces of the Hamiltonian

$$
\mathscr{H}:=\left(\begin{array}{cc}
A & -B B^{T} \\
-C^{T} C & -A^{T}
\end{array}\right) \in \mathbb{Q}\left(a_{0}, \ldots, a_{n-1}, c_{0}, \ldots, c_{n-1}\right)^{2 n \times 2 n} .
$$

$f(\lambda)$ is the characteristic polynomial of \mathscr{H}

$$
f(\lambda)=(-1)^{n} \sum_{k=0}^{n} \sum_{l=0}^{n}(-1)^{k}\left(c_{l} c_{k}+a_{l} a_{k}\right) \lambda^{l+k} .
$$

Theorem -[Rance et al. (2016)]

Let $f(\lambda)=g(\lambda) g(-\lambda)$ be a factorization of f, where

$$
g(\lambda):=\sum_{k=0}^{n} b_{k} \lambda^{k}
$$

The equations that stems from the equality are those in \mathcal{B}

Theorem - [Kanno et al. (2009)]

$X>0 \Leftrightarrow \sigma:=\max \left\{b_{n-1} \in \mathbb{R} \mid\right.$ solution of $\left.\mathcal{B}\right\}$

Some interesting properties

Theorem - [Rance et al. (2016)]

The polynomial ideal generated by \mathcal{B} is in shape position with respect to any variable b_{n-k} where k is odd.

Our proof is based on the spectral factorization formulation

Moreover, the system has certain symmetries that should be identified (Ongoing work)

Parametrization of the solutions of \mathcal{B}

Next step : parametrize the solutions of \mathcal{B}

- Generically, the system \mathcal{B} can be written in the following form :

$$
\left\{\begin{array}{l}
\mathcal{P}\left(b_{n-1}\right)=0 \\
b_{n-2}=f_{n-2}\left(b_{n-1}\right) \\
\cdots \\
b_{0}=f_{0}\left(b_{n-1}\right)
\end{array}\right.
$$

Solving \rightsquigarrow computing the roots of $\mathcal{P}\left(b_{n-1}\right)+$ substitution in the f_{i}
Study the maximum real root of $\mathcal{P}\left(b_{n-1}\right)$ with respect to the parameters

Some theoretical and practical barriers

- Size of expressions grows exponentially
\rightarrow limited to low order systems
- Degrees of polynomials grows exponentially
\rightarrow No closed-form solutions for high order systems
\Rightarrow Interest in small order systems

Overview

1 Algebraic Riccati Equations for the optimal control problem

2 A new algebraic description

3 The case of 3 order systems

4 A practical example

5 Conclusion and perspectives

Small order systems $-n=3$

$$
\mathcal{B}:=\left\{\begin{array}{lll}
\mathcal{B}_{0}:=b_{0}^{2}-d_{0}=0 & \Rightarrow & b_{0} \text { completely determined } \\
\mathcal{B}_{1}:=b_{1}^{2}-2 b_{0} b_{2}-d_{2}=0 & & \\
\mathcal{B}_{2}:=b_{2}^{2}-2 b_{1}-d_{4}=0 & \Rightarrow & b_{1}=\frac{1}{2}\left(b_{2}^{2}-d_{4}\right)
\end{array}\right.
$$

$\mathcal{B}_{1} \Rightarrow$ univariate polynomial \mathcal{P} in b_{2}

$$
\mathcal{P}\left(b_{2}\right):=b_{2}^{4}-2 d_{4} b_{2}^{2}-8 b_{0} b_{2}+d_{4}^{2}-4 d_{2}=0
$$

Its roots are $b_{2}(\varepsilon)=\varepsilon_{1} \frac{1}{2} \sqrt{2 u}+\varepsilon_{2} \frac{1}{2} \sqrt{\Delta_{2}}$ with

$$
\left\{\begin{array}{l}
\varepsilon_{1}:= \pm 1, \varepsilon_{2}:= \pm 1, \varepsilon:=\left(\varepsilon_{1}, \varepsilon_{2}\right), \\
p_{2}:=4 d_{2}-\frac{4}{3} d_{4}^{2}, \\
q_{2}:=\frac{8}{3} d_{2} d_{4}-\frac{16}{27} d_{4}^{3}-8 b_{0}^{2}, \\
\alpha:=\left(\frac{-27 q_{2}+\sqrt{27\left(4 p_{2}^{3}+27 q_{2}^{2}\right)}}{2}\right)^{1 / 3} \\
u:=\frac{1}{3}\left(\alpha-\frac{3 p_{2}}{\alpha}+2 d_{4}\right), \\
\Delta_{2}:=2\left(2 d_{4}+\varepsilon_{1} \frac{8 b_{0}}{\sqrt{2 u}}-u\right) .
\end{array}\right.
$$

Determine $X>0$: which root is the greatest?

Discriminants of univariate polynomials

Choosing $b_{2, \max } \Leftrightarrow$ Computing the discriminant of \mathcal{P}

Discriminant of a quadratic polynomial

Let $P(x)=x^{2}+a x+b, x \in \mathbb{R},(a, b) \in \mathbb{R}^{2}$.
The discriminant of P is defined by :

$$
\Delta(a, b)=a^{2}-4 b .
$$

Roots of P :

$$
x_{1,2}=-a \pm \sqrt{\Delta(a, b)} .
$$

\Rightarrow When $\Delta(a, b)=0, x_{1}$ and x_{2} are crossing !

Using the Discriminants of univariate polynomials

Exemple of a second order polynomial

$$
\begin{gathered}
P(x)=x^{2}+a x+b=0 \\
\operatorname{disc}_{x}(P)=a^{2}-4 b \\
x_{1,2}(a, b)=-a \pm \sqrt{\operatorname{disc}_{x}(P)} \\
\text { Red cell }: x_{1,2}(0,1)= \pm 2 i \in \mathbb{C} \\
\text { Blue cell }: x_{1,2}(0,-1)= \pm 2 \in \mathbb{R}
\end{gathered}
$$

Discriminant of

$$
\mathcal{P}\left(b_{2}\right):=b_{2}^{4}-2 d_{4} b_{2}^{2}-8 b_{0} b_{2}+d_{4}^{2}-4 d_{2}
$$

We apply the same reasoning to $\mathcal{P}\left(b_{2}\right)$ to prove that

$$
\sigma=\frac{1}{2} \sqrt{2 u}+\frac{1}{2} \sqrt{\Delta_{2}}
$$

is the maximal real root of \mathcal{P} for any values of the parameters.

Overview

1 Algebraic Riccati Equations for the optimal control problem
2. A new algebraic description

3 The case of 3 order systems

4 A practical example

5 Conclusion and perspectives

A practical example

Two-mass-spring system :

$$
\begin{aligned}
& \begin{array}{c}
c:=\frac{k}{m_{1} m_{2}} \\
a_{2}:=\frac{m_{1}+m_{2}}{m_{1} m_{2}} k
\end{array} \\
& G:=\frac{y_{1}}{e_{1}}=\frac{c_{0}}{s^{2}\left(s^{2}+a_{2}\right)} \\
& X:=\left(\begin{array}{cccc}
b_{0} b_{1} & b_{0} b_{2} & b_{0} b_{3} & b_{0} \\
b_{0} b_{2} & b_{1} b_{2}-b_{0} b_{3} & b_{1} b_{3}-b_{0} & b_{1} \\
b_{0} b_{3} & b_{1} b_{3}-b_{0} & b_{2} b_{3}-b_{1} & b_{2}-a_{2} \\
b_{0} & b_{1} & b_{2}-a_{2} & b_{3}
\end{array}\right) \\
& \mathcal{B} \Rightarrow\left\{\begin{array}{l}
\mathcal{B}_{0}:=b_{0}^{2}-c_{0}^{2}=0 \\
\mathcal{B}_{1}:=b_{1}^{2}-2 b_{0} b_{2}=0 \\
\mathcal{B}_{2}:=b_{2}^{2}-2 b_{1} b_{3}+2 b_{0}-a_{2}^{2}=0 \\
\mathcal{B}_{3}:=b_{3}^{2}-2 b_{2}+2 a_{2}=0
\end{array}\right.
\end{aligned}
$$

A practical example

- A parametrization of \mathcal{B} is easily found:

$$
\left\{\begin{array}{l}
b_{0}=c_{0} \\
b_{1}=\frac{b_{3}^{4}+4 a_{2} b_{3}^{2}+8 c_{0}}{8 b_{3}} \\
b_{2}=\frac{1}{2} b_{3}^{2}+a_{2} \\
\mathcal{P}\left(b_{3}\right):=b_{3}^{8}+8 a_{2} b_{3}^{6}+16\left(a_{2}^{2}-3 c_{0}\right) b_{3}^{4}-64 a_{2} c_{0} b_{3}^{2}+64 c_{0}^{2}=0
\end{array}\right.
$$

- \mathcal{P} is of degree $4 \Rightarrow$ symbolic
- Positive definite solution is given by $X(\sigma)$ where :

$$
\sigma:=\sqrt{2} \sqrt{\left(\sqrt{2 c_{0}}-a_{2}\right)+\sqrt{\left(\sqrt{2 c_{0}}-a_{2}\right)^{2}+2 c_{0}}}
$$

- In this case : $X\left(c_{0}, a_{2}\right)$

Overview

1 Algebraic Riccati Equations for the optimal control problem

2 A new algebraic description

3 The case of 3 order systems

4 A practical example

5 Conclusion and perspectives

Conclusion and perspectives

- Contributions :
- Symbolic techniques in automatic control problems to handle parameters
- Closed form control with respect to the parameters
- Also used for H_{∞} control
- Ongoing work :
- Study the symmetries of the systems that stem from the Riccati Equations
- Extension to higher order systems \rightsquigarrow work with implicit equations
- Extension to MIMO systems

Thank you for your attention

H. Anai, S. Hara, M. Kanno, K. Yokoyama.

Parametric polynomial factorization using the sum of roots and its application to a control design problem.
J. Symb. Comp., 44 (2009), 703-725.

F. Êoulier, C. Chen, Changbo, F. Lemaire, M. Moreno Maza.

Real root isolation of regular chains.
Asian Symposium on Computer Mathematics, R. Feng et al. (eds.), Springer, 2009, 33-48.Jin-San Cheng, Xiao-Shan Gao, Chee-Keng Yap.
Complete numerical isolation of real roots in zero-dimensional triangular systems. J. Symb. Comp., 44 (2009), 768-785.

D. Cox, J. Little, D. O'Shea.

Ideals, Varieties, and Algorithms
Springer 2015.
G. Collins, A. Akritas.

Polynomial real roots isolation using Descartes' rule of signs.
SYMSAC, 1976, 272-275.

J.C. Faugère, P. Gianni, D. Lazard, T. Mora.

Efficient computation of Zero-dimensional Gröbner Bases by change of ordering J. Symb. Comp., 1994.
\square M. D. Darmian, A. Hashemi.

Parametric FGLM algorithm.

J. Symb. Comp., 2017.

五
K. Forsman, J. Eriksson.

Solving the ARE symbolically.
CDC 1993.K. Glover, D. C. McFarlane.

Robust stabilization of normalized coprime factor plant descriptions with
H_{∞}-bounded uncertainty.
IEEE Trans. Automat. Contr., 34 (1989), 821-830.
M. Kanno, S. Hara.

Symbolic-numeric hybrid optimization for plant/controller integrated design in H_{∞} loop-shaping design.
Journal of Math-for-Industry, 4 (2012), 135-140.
M. Kanno, K. Yokoyama, H. Hanai, S. Hara.

Solution of algebraic Riccati equations using the sum of roots.
ISSAC 2009, 215-222.
O
D. Lazard, F. Rouillier.

Solving Parametric Polynomial Systems 2007 J. Symb. Comp., 42 (2007), 636-667.

G. Rance, Y. Bouzidi, A. Quadrat, A. Quadrat.

A symbolic-numeric method for the parametric H_{∞} loop-shaping design problem MTNS 2016.
F. Rouillier.

Solving zero-dimensional systems through the Rational Univariate Representation.
Applicable Algebra in Engineering Commutication and Computing, 9 (1999), 433-461.
F. Rouillier.

Algorithmes pour l'étude des solutions réelles des systèmes polynomiaux. Habilitation thesis, 2007.
F. Rouillier, P. Zimmerman.

Efficient isolation of polynomial's real roots.
J. Comput. Applied Mathematics, 162 (2004), 33- 50.

E
J.P. Tignol.

Galois' Theory of Algebraic Equations.
World Scientific, 2002.
G. Vinnicombe.

Uncertainty and Feedback $-H_{\infty}$ Loop-shaping and the μ-gap metric. Imperial College Press, 2001.
B. Wie, D. S. Bernstein.

A benchmark problem for robust control design.
J. Guidance, Control, and Dynamics, 15, (1992), 1057-1059.
K. Zhou, J.C. Doyle, K. Glover.

Robust and Optimal Control.
Prentice-Hall, 1996.

