Point counting on hyperelliptic curves: to genus 3 and beyond

Simon Abelard Université de Lorraine, Nancy

Joint work with P. Gaudry and P.-J. Spaenlehauer

January 25, 2018

Simon Abelard

Point counti

It's all about generating series...

A first example

How many solutions of $y^2 = x^7 - 7x^5 + 14x^3 - 7x + 1$ in \mathbb{F}_{23^k} ? Goal: generating series associated to these numbers of solutions. This series is rational so small k's are sufficient (≤ 3 in this case).

It's all about generating series...

A first example

How many solutions of $y^2 = x^7 - 7x^5 + 14x^3 - 7x + 1$ in \mathbb{F}_{23^k} ? Goal: generating series associated to these numbers of solutions. This series is rational so small k's are sufficient (≤ 3 in this case).

Curves and points

Let $f \in \mathbb{F}_q[X]$ be monic, squarefree of degree 2g + 1. Equation $Y^2 = f(X) \rightarrow$ hyperelliptic curve \mathcal{C} of genus g over \mathbb{F}_q . If \mathcal{C} defined over \mathbb{F}_q , $P = (x, y) \in \mathcal{C}$ is rational if $(x, y) \in (\mathbb{F}_q)^2$.

It's all about generating series...

A first example

How many solutions of $y^2 = x^7 - 7x^5 + 14x^3 - 7x + 1$ in \mathbb{F}_{23^k} ? Goal: generating series associated to these numbers of solutions. This series is rational so small k's are sufficient (≤ 3 in this case).

Curves and points

Let $f \in \mathbb{F}_q[X]$ be monic, squarefree of degree 2g + 1. Equation $Y^2 = f(X) \rightarrow$ hyperelliptic curve \mathcal{C} of genus g over \mathbb{F}_q . If \mathcal{C} defined over \mathbb{F}_q , $P = (x, y) \in \mathcal{C}$ is rational if $(x, y) \in (\mathbb{F}_q)^2$.

Let
$$\mathcal{C}(\mathbb{F}_{q^i}) = \left\{ (x, y) \in (\mathbb{F}_{q^i})^2 | y^2 = f(x) \right\} \cup \{\infty\}.$$

Point counting: computing $\#\mathcal{C}(\mathbb{F}_{q^i})$ for $1 \le i \le g$.

... Or rather polynomials

Let C be a hyperelliptic curve of genus g.

Weil conjectures to the rescue

Point counting over \mathbb{F}_q is computing the local ζ function of \mathcal{C} :

$$\zeta(s) = \exp\left(\sum_k \# \mathcal{C}(\mathbb{F}_{q^k}) rac{s^k}{k}
ight) \stackrel{thm}{=} rac{\Lambda(s)}{(1-s)(1-qs)}$$

With $\Lambda \in \mathbb{Z}[X]$ of degree 2*g* having bounded coefficients.

... Or rather polynomials

Let C be a hyperelliptic curve of genus g.

Weil conjectures to the rescue

Point counting over \mathbb{F}_q is computing the local ζ function of \mathcal{C} :

$$\zeta(s) = \exp\left(\sum_k \# \mathcal{C}(\mathbb{F}_{q^k}) rac{s^k}{k}
ight) \stackrel{thm}{=} rac{\Lambda(s)}{(1-s)(1-qs)}$$

With $\Lambda \in \mathbb{Z}[X]$ of degree 2g having bounded coefficients.

Point counting

Input: $f \in \mathbb{F}_q[X]$ defining a hyperelliptic curve Output: the polynomial Λ

... Or rather polynomials

Let \mathcal{C} be a hyperelliptic curve of genus g.

Weil conjectures to the rescue

Point counting over \mathbb{F}_q is computing the local ζ function of \mathcal{C} :

$$\zeta(s) = \exp\left(\sum_k \# \mathcal{C}(\mathbb{F}_{q^k}) rac{s^k}{k}
ight) \stackrel{thm}{=} rac{\Lambda(s)}{(1-s)(1-qs)}$$

With $\Lambda \in \mathbb{Z}[X]$ of degree 2g having bounded coefficients.

Point counting

Input: $f \in \mathbb{F}_q[X]$ defining a hyperelliptic curve Output: the polynomial Λ

We study the complexity of such algorithms.

Simon Abelard

A broad range of related problems

Finding 'nice' curves

Cryptography: $g \le 2$ and q large, needed to assess security. Error-correcting codes: need curves with many rational points.

Arithmetic geometry

Conjectures in number theory e.g. Sato-Tate in genus ≥ 2 . *L*-functions associated: $L(s, C) = \sum_p A_p / p^s$ with $A_p = \#C(\mathbb{F}_p) / \sqrt{p}$. Computing them relies on point-counting primitives.

A broad range of related problems

Finding 'nice' curves

Cryptography: $g \le 2$ and q large, needed to assess security. Error-correcting codes: need curves with many rational points.

Arithmetic geometry

Conjectures in number theory e.g. Sato-Tate in genus ≥ 2 . *L*-functions associated: $L(s, C) = \sum_{p} A_{p}/p^{s}$ with $A_{p} = \#C(\mathbb{F}_{p})/\sqrt{p}$. Computing them relies on point-counting primitives.

Two families of algorithms

- *p*-adic methods: polynomial in *g*, exponential in log *p* Satoh'99, Kedlaya'01, Lauder'04
- *l*-adic methods: exponential in g, polynomial in log q Schoof'85, Gaudry-Schost'12

Overview and contributions

Asymptotic complexities (hyperelliptic case)

Pila'90 Huang-lerardi'98 Adleman-Huang'01 $(\log q)^{O(g^2 \log g)}$ $(\log q)^{g^{O(1)}}$ $(\log q)^{O_g(1)}$ $O_g((\log q)^{cg})$

Our result

Overview and contributions

Asymptotic complexities (hyperelliptic case)

Pila'90	Huang-lerardi'98	Adleman-Huang'01	Our result
$(\log q)^{O_g(1)}$	$(\log q)^{g^{O(1)}}$	$(\log q)^{O(g^2 \log g)}$	$O_g\left((\log q)^{cg} ight)$

Practical algorithms

Genus	Complexity	Authors
g=1	$\widetilde{O}(\log^4 q)$	Schoof-Elkies-Atkin
g=2	$\widetilde{O}(\log^8 q)$	Gaudry-Schost
g = 3	$\widetilde{O}(\log^{14} q)$?	
g = 2 with RM	$\widetilde{O}(\log^5 q)$	Gaudry-Kohel-Smith
g = 3 with RM	$\widetilde{O}(\log^6 q)$	Our result

Let $C: y^2 = f(x)$ be a hyperelliptic curve over \mathbb{F}_q . Let J be its Jacobian and g its genus.

- (Hasse-Weil) coefficients of Λ are bounded integers.
- $\ \, {\it 0} \ \, \ell\text{-torsion} \ \, J[\ell] = \{D\in J|\ell D=0\} \simeq \left(\mathbb{Z}/\ell\mathbb{Z}\right)^{2g}$
- Solution Frobenius $\pi : (x, y) \mapsto (x^q, y^q)$ acts linearly on $J[\ell]$
- **③** For χ the char. polynomial of π , $\chi^{\text{rev}} = \Lambda \mod \ell$

Algorithm a la Schoof

For each prime $\ell \leq (9g + 3) \log q$ Describe I_{ℓ} the ideal of ℓ -torsion Compute $\chi \mod \ell$ by testing char. eq. of π in I_{ℓ} Deduce $\Lambda \mod \ell$ Recover Λ by CRT

Let $C: y^2 = f(x)$ be a hyperelliptic curve over \mathbb{F}_q . Let J be its Jacobian and g its genus.

- (Hasse-Weil) coefficients of Λ are bounded integers.
- 2 ℓ -torsion $J[\ell] = \{D \in J | \ell D = 0\} \simeq (\mathbb{Z}/\ell\mathbb{Z})^{2g}$
- Solution Frobenius $\pi : (x, y) \mapsto (x^q, y^q)$ acts linearly on $J[\ell]$
- **③** For χ the char. polynomial of π , $\chi^{\text{rev}} = \Lambda \mod \ell$

Algorithm a la Schoof

```
For each prime \ell \leq (9g + 3) \log q
Describe I_{\ell} the ideal of \ell-torsion
Compute \chi \mod \ell by testing char. eq. of \pi in I_{\ell}
Deduce \Lambda \mod \ell
Recover \Lambda by CRT
```

Let $C: y^2 = f(x)$ be a hyperelliptic curve over \mathbb{F}_q . Let J be its Jacobian and g its genus.

- (Hasse-Weil) coefficients of Λ are bounded integers.
- 2 ℓ -torsion $J[\ell] = \{D \in J | \ell D = 0\} \simeq (\mathbb{Z}/\ell\mathbb{Z})^{2g}$
- Solution Frobenius $\pi : (x, y) \mapsto (x^q, y^q)$ acts linearly on $J[\ell]$
- For χ the char. polynomial of π , $\chi^{\text{rev}} = \Lambda \mod \ell$

Algorithm a la Schoof

For each prime $\ell \leq (9g + 3) \log q$ Describe I_{ℓ} the ideal of ℓ -torsion Compute $\chi \mod \ell$ by testing char. eq. of π in I_{ℓ} Deduce $\Lambda \mod \ell$ Recover Λ by CRT

Let $C: y^2 = f(x)$ be a hyperelliptic curve over \mathbb{F}_q . Let J be its Jacobian and g its genus.

- (Hasse-Weil) coefficients of Λ are bounded integers.
- 2 ℓ -torsion $J[\ell] = \{D \in J | \ell D = 0\} \simeq (\mathbb{Z}/\ell\mathbb{Z})^{2g}$
- Solution Frobenius $\pi : (x, y) \mapsto (x^q, y^q)$ acts linearly on $J[\ell]$
- **③** For χ the char. polynomial of π , $\chi^{\text{rev}} = \Lambda \mod \ell$

Algorithm a la Schoof

```
For each prime \ell \leq (9g + 3) \log q

Describe I_{\ell} the ideal of \ell-torsion

Compute \chi \mod \ell by testing char. eq. of \pi in I_{\ell}

Deduce \Lambda \mod \ell

Recover \Lambda by CRT
```

Handling the torsion

Goal: represent $J[\ell]$, ideal of ℓ -torsion. Method: write $\ell D = 0$ formally, then 'solve' that system.

Here comes trouble. . . How to model and solve it efficiently?

Handling the torsion

Goal: represent $J[\ell]$, ideal of ℓ -torsion. Method: write $\ell D = 0$ formally, then 'solve' that system.

Here comes trouble. . . How to model and solve it efficiently? → multihomogeneous structure

Modelling the $\ell\text{-torsion}$

Writing $\ell D = 0$

Formally, $D = P_1 + \cdots + P_g$, coordinates of $P_i(x_i, y_i)$ are variables. Compute ℓP_i , then apply zero-test to $\ell D = \sum_i \ell P_i$.

Modelling the ℓ -torsion

Writing $\ell D = 0$

Formally, $D = P_1 + \cdots + P_g$, coordinates of $P_i(x_i, y_i)$ are variables. Compute ℓP_i , then apply zero-test to $\ell D = \sum_i \ell P_i$.

 \Rightarrow there is a $\varphi(X, Y) = P(X) + YQ(X)$ such that $\ell D = (\varphi)$.

Modelling the ℓ -torsion

Writing $\ell D = 0$

Formally, $D = P_1 + \cdots + P_g$, coordinates of $P_i(x_i, y_i)$ are variables. Compute ℓP_i , then apply zero-test to $\ell D = \sum_i \ell P_i$.

 \Rightarrow there is a $\varphi(X, Y) = P(X) + YQ(X)$ such that $\ell D = (\varphi)$.

All computations done...

For each *i* we get the following congruence:

$$P(X) + Q(X)v_i(X) \equiv 0 \mod u_i(X)$$

About g^2 equations in g^2 variables \Rightarrow Bézout bound in ℓ^{g^2} . \Rightarrow seems hard to improve previous bound in $(\log q)^{O(g^2)}$... But not all these variables appear with high degrees.

Multihomogeneity and comple	exity
$2g$ variables (x_i, y_i) $\prod_i d_g(x_i) \neq 0, \ y_i^2 - f(x_i) = 0$ $d_{ij} = d_j(x_i), \ e_{ij} = e_j(x_i)$	$\begin{cases} \text{degree } O_g(\ell^3) \text{ in } x_i \\ O(g^2) \text{ equations} \end{cases}$
Searching $\varphi = P(X) + Q(X)Y$ $g^2 - g$ variables p_i and q_i $P + Qv_i \equiv 0 \mod u_i$ $\forall i \neq j, \operatorname{Res}(u_i, u_j) \neq 0$	$\left\{egin{array}{l} \deg &\leq g^2 ext{ in } d_{ij} \ \deg &\leq 1 ext{ in } p_i, q_i, e_{ij} \ O(g^2) ext{ variables} \ O(g^2) ext{ equations} \end{array} ight.$

Multihomogeneity and comple	exity
$2g ext{ variables } (x_i, y_i) \ \prod_i d_g(x_i) eq 0, \ y_i^2 - f(x_i) = 0 \ d_{ij} = d_j(x_i), \ e_{ij} = e_j(x_i)$	$\begin{cases} \text{degree } O_g(\ell^3) \text{ in } x_i \\ O(g^2) \text{ equations} \end{cases}$
Searching $\varphi = P(X) + Q(X)Y$ $g^2 - g$ variables p_i and q_i $P + Qv_i \equiv 0 \mod u_i$ $\forall i \neq j, \operatorname{Res}(u_i, u_j) \neq 0$	$\left\{egin{array}{l} \deg &\leq g^2 ext{ in } d_{ij} \ \deg &\leq 1 ext{ in } p_i, q_i, e_{ij} \ O(g^2) ext{ variables} \ O(g^2) ext{ equations} \end{array} ight.$

Theorem (*Giusti-Lecerf-Salvy'01*, *Cafure-Matera'06*)

Assume f_1, \dots, f_n have degrees $\leq d$ and form a reduced regular sequence, and let $\delta = \max_i \deg(f_1, \dots, f_i)$. There is an algorithm computing a geometric resolution in time polynomial in δ , d, n.

With $\delta = O_g(\ell^{3g})$ bounded by multihomogeneous Bézout bound.

Handling the torsion

Goal: represent $J[\ell]$, ideal of ℓ -torsion. Method: write $\ell D = 0$ formally, then 'solve' that system.

Here comes trouble...

How to model and solve it efficiently?

 \longrightarrow multihomogeneous structure

Overall result

Model the ℓ -torsion with complexity $O_g(\ell^{cg})$. Recall the largest ℓ is in $O_g(\log q)$.

 \Rightarrow we compute \land in $O_g(\log^{cg} q)$.

Overview and contributions

Asymptotic complexities (hyperelliptic case)

Pila'90	Huang-lerardi'98	Adleman-Huang'01	Our result
$(\log q)^{O_g(1)}$	$(\log q)^{g^{O(1)}}$	$(\log q)^{O(g^2 \log g)}$	$O_g\left((\log q)^{cg} ight)$

Practical algorithms

Genus	Complexity	Authors
g=1	$\widetilde{O}(\log^4 q)$	Schoof-Elkies-Atkin
g = 2	$\widetilde{O}(\log^8 q)$	Gaudry-Schost
g = 3	$\widetilde{O}(\log^{14} q)$?	
g = 2 with RM	$\widetilde{O}(\log^5 q)$	Gaudry-Kohel-Smith
g = 3 with RM	$\widetilde{O}(\log^6 q)$	Our result

Experiments in genus 3?

Just writing the systems is hard, solving out of reach for $\ell \geq 5.$

Bad news

Remember $J[\ell] \simeq (\mathbb{Z}/\ell\mathbb{Z})^{2g}$, must deal with ideals of degree ℓ^6 . Can reach $\tilde{O}(\ell^{12})$ using naive elimination, hard to go below. \Rightarrow Intrinsic difficulty due to size of $J[\ell]$.

Experiments in genus 3?

Just writing the systems is hard, solving out of reach for $\ell \geq 5.$

Bad news

Remember $J[\ell] \simeq (\mathbb{Z}/\ell\mathbb{Z})^{2g}$, must deal with ideals of degree ℓ^6 . Can reach $\tilde{O}(\ell^{12})$ using naive elimination, hard to go below. \Rightarrow Intrinsic difficulty due to size of $J[\ell]$.

First step: easier instances

 $J[\ell]$ is a vector space of fixed size, what about subspaces? Context \Rightarrow need π -stable subspaces (i.e. factors of $\Lambda \mod \ell$) Question: find curves with ℓ -torsion that is sum of such subspaces.

A practical case in genus 3

A RM family [Kohel-Smith'06]

Family $C_t: y^2 = x^7 - 7x^5 + 14x^3 - 7x + t$ with $t \in \mathbb{F}_q$. \longrightarrow hyperelliptic curves of genus 3, but a bit special.

Denote J_t their Jacobians, recall they are groups.

Where there are groups, there are group (endo)morphisms. Famous endomorphisms: Frobenius π , multiplication [ℓ].

A practical case in genus 3

A RM family [Kohel-Smith'06]

Family
$$C_t: y^2 = x^7 - 7x^5 + 14x^3 - 7x + t$$
 with $t \in \mathbb{F}_q$.

 \rightarrow hyperelliptic curves of genus 3, but a bit special.

Denote J_t their Jacobians, recall they are groups.

Where there are groups, there are group (endo)morphisms. Famous endomorphisms: Frobenius π , multiplication [ℓ].

A remarkable structure

Here, additional endomorphism η , explicit and easy to compute: For P = (x, y) a generic point on C, $\eta(P) = P_+ + P_-$ with

$$P_{\pm} = \left(-\frac{11}{4}x \pm \sqrt{\frac{105}{16}x^2 + \frac{16}{9}}, y \right)$$

Exploiting this structure

For some ℓ , decompose multiplication as $[\ell] = \epsilon_1 \epsilon_2 \epsilon_3$ in $\mathbb{Z}[\eta]$, Minimal polynomial of η is $X^3 + X^2 - 2X - 1$, Write $\epsilon_i = a_i + b_i \eta + c_i \eta^2$, and $|a_i|$, $|b_i|$, $|c_i|$ in $O(\ell^{2/3})$. Split $J_t[\ell] \cong \bigoplus_{i=1}^3 \text{Ker } \epsilon_i \Rightarrow \text{model Ker } \epsilon_i \text{ instead of } J_t[\ell]$.

Exploiting this structure

For some ℓ , decompose multiplication as $[\ell] = \epsilon_1 \epsilon_2 \epsilon_3$ in $\mathbb{Z}[\eta]$, Minimal polynomial of η is $X^3 + X^2 - 2X - 1$, Write $\epsilon_i = a_i + b_i \eta + c_i \eta^2$, and $|a_i|$, $|b_i|$, $|c_i|$ in $O(\ell^{2/3})$. Split $J_t[\ell] \cong \bigoplus_{i=1}^3 \text{Ker } \epsilon_i \Rightarrow \text{model Ker } \epsilon_i \text{ instead of } J_t[\ell]$.

Another modelization

Write $\epsilon_i(D) = 0$ instead of $\ell D = 0$, say $D = P_1 + P_2 + P_3 - 3(\infty)$, Rewrite it $\epsilon_i(P_1) + \epsilon_i(P_2) = -\epsilon_i(P_3)$:

$$egin{aligned} & ilde{d}_1(x_1,x_2,y)d_3(x_3)- ilde{d}_3(x_1,x_2)d_1(x_3)=0, \ & ilde{d}_2(x_1,x_2,y)d_3(x_3)- ilde{d}_3(x_1,x_2)d_2(x_3)=0, \ & ilde{d}_3(x_1,x_2,y)d_3(x_3)- ilde{d}_3(x_1,x_2)d_3(x_3)=0. \end{aligned}$$

Exploiting this structure

For some ℓ , decompose multiplication as $[\ell] = \epsilon_1 \epsilon_2 \epsilon_3$ in $\mathbb{Z}[\eta]$, Minimal polynomial of η is $X^3 + X^2 - 2X - 1$, Write $\epsilon_i = a_i + b_i \eta + c_i \eta^2$, and $|a_i|$, $|b_i|$, $|c_i|$ in $O(\ell^{2/3})$. Split $J_t[\ell] \cong \bigoplus_{i=1}^3 \text{Ker } \epsilon_i \Rightarrow \text{model Ker } \epsilon_i \text{ instead of } J_t[\ell]$.

Another modelization

Write $\epsilon_i(D) = 0$ instead of $\ell D = 0$, say $D = P_1 + P_2 + P_3 - 3(\infty)$, Rewrite it $\epsilon_i(P_1) + \epsilon_i(P_2) = -\epsilon_i(P_3)$:

$$egin{aligned} & ilde{d}_1(x_1,x_2,y)d_3(x_3)- ilde{d}_3(x_1,x_2)d_1(x_3)=0, \ & ilde{d}_2(x_1,x_2,y)d_3(x_3)- ilde{d}_3(x_1,x_2)d_2(x_3)=0, \ & ilde{d}_3(x_1,x_2,y)d_3(x_3)- ilde{d}_3(x_1,x_2)d_3(x_3)=0. \end{aligned}$$

Degrees of these polynomials are in $O(\ell^{2/3})$. Reminder: without splitting $J_t[\ell]$, degrees would be in $O(\ell^2)$.

Simon Abelard

Solving the system

In theory: no fancy trick

Successive elimination with resultants $\rightarrow \widetilde{O}(\ell^4)$. About a third of ℓ splits, largest one still in $O(\log q)$. \Rightarrow Overall complexity in $\widetilde{O}(\log^6 q)$, vs $\widetilde{O}(\log^{14} q)$ in general.

Solving the system

In theory: no fancy trick

Successive elimination with resultants $\rightarrow \widetilde{O}(\ell^4)$. About a third of ℓ splits, largest one still in $O(\log q)$. \Rightarrow Overall complexity in $\widetilde{O}(\log^6 q)$, vs $\widetilde{O}(\log^{14} q)$ in general.

In practice (q is a 64-bit prime)

Compute a Gröbner basis using Magma's routines. Split ℓ we aim for: 13, 29 (also 41 and 43, but speculative) Other methods yield 2,3 (inert) and 7 (ramified). Deduce Λ using BSGS, with speed-up $\prod_{\ell} \ell^{3/2}$. Ongoing computation, expect Λ in roughly one CPU year.

Conclusion

Describing $J[\ell]$: modelling by polynomial system, then solving. For curves with RM: split the torsion and describe the smaller bits.

	Theoretic result	Fixed genus case
Curves	hyperelliptic	hyperelliptic with RM
Genus	any g	g = 3
Object to model	ℓ -torsion $J[\ell]$	Ker ϵ_i where $\ell = \prod \epsilon_i$
Equation	$\ell D = 0$	$\epsilon_i(D) = 0$
Complexity	$O_g\left((\log q)^{cg} ight)$	$\widetilde{O}((\log q)^6)$

Thanks for your attention

