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/* */ E,C,
/* */ c,r,
/* */ u,l,

e,s,
i=5,

d[5],Q[999 ]={0};main(n ){for
(;i--;e=scanf("%" "d",d+i));for(C =*d;
++i<C ;++Q[ i*i% C],c= i[Q]?
c:i); for(;i --;) for(u =C;u
--;n +=!u*Q [l%C ],e+= Q[(C
+l*l- c*s* s%C) %C]) for(
l=i,s=u,r=4;r;E= i*l+c*u*s,s=(u*l +i*s)
%C,l=E%C+r --[d]);printf ("%d"

"\n",
(e+n*
n)/2

/* cc caramba.c; echo f3 f2 f1 f0 p | ./a.out */ -C);}

CARAMBA
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It’s all about generating series. . .

A first example
How many solutions of y 2 = x7 − 7x5 + 14x3 − 7x + 1 in F23k ?
Goal: generating series associated to these numbers of solutions.
This series is rational so small k ’s are sufficient (≤ 3 in this case).

Curves and points
Let f ∈ Fq[X ] be monic, squarefree of degree 2g + 1.
Equation Y 2 = f (X ) → hyperelliptic curve C of genus g over Fq.
If C defined over Fq, P = (x , y) ∈ C is rational if (x , y) ∈ (Fq)2.

Let C(Fqi ) =
{

(x , y) ∈ (Fqi )2 |y 2 = f (x)
}
∪ {∞}.

Point counting: computing #C(Fqi ) for 1 ≤ i ≤ g .
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. . . Or rather polynomials
Let C be a hyperelliptic curve of genus g .

Weil conjectures to the rescue
Point counting over Fq is computing the local ζ function of C:

ζ(s) = exp
(∑

k
#C(Fqk )sk

k

)
thm= Λ(s)

(1− s)(1− qs) .

With Λ ∈ Z[X ] of degree 2g having bounded coefficients.

Point counting
Input: f ∈ Fq[X ] defining a hyperelliptic curve
Output: the polynomial Λ

We study the complexity of such algorithms.
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A broad range of related problems
Finding ‘nice’ curves
Cryptography: g ≤ 2 and q large, needed to assess security.
Error-correcting codes: need curves with many rational points.

Arithmetic geometry
Conjectures in number theory e.g. Sato -Tate in genus ≥ 2.
L-functions associated: L(s, C) = ∑

p Ap/ps with Ap = #C(Fp)/√p.
Computing them relies on point-counting primitives.

Two families of algorithms
p-adic methods: polynomial in g , exponential in log p
Satoh’99, Kedlaya’01, Lauder’04
`-adic methods: exponential in g , polynomial in log q
Schoof’85, Gaudry-Schost’12
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Overview and contributions

Asymptotic complexities (hyperelliptic case)
Pila’90 Huang-Ierardi’98 Adleman-Huang’01 Our result

(log q)Og (1) (log q)gO(1) (log q)O(g2 log g) Og ((log q)cg )

Practical algorithms
Genus Complexity Authors
g = 1 Õ(log4 q) Schoof-Elkies-Atkin
g = 2 Õ(log8 q) Gaudry-Schost
g = 3 Õ(log14 q) ?

g = 2 with RM Õ(log5 q) Gaudry-Kohel-Smith
g = 3 with RM Õ(log6 q) Our result
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From curves to groups

R

P

Q

P + Q + R = 0

P1

P2 Q1

Q2
R1

R2

P1 + P2 + Q1 + Q2 + R1 + R2 = 0
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Counting points on hyperelliptic curves
Let C : y 2 = f (x) be a hyperelliptic curve over Fq.
Let J be its Jacobian and g its genus.

1 (Hasse-Weil) coefficients of Λ are bounded integers.
2 `-torsion J [`] = {D ∈ J |`D = 0} ' (Z/`Z)2g

3 Frobenius π : (x , y) 7→ (xq, yq) acts linearly on J [`]
4 For χ the char. polynomial of π, χrev = Λ mod `

Algorithm a la Schoof
For each prime ` ≤ (9g + 3) log q
Describe I` the ideal of `-torsion
Compute χ mod ` by testing char. eq. of π in I`
Deduce Λ mod `

Recover Λ by CRT
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Handling the torsion

Goal: represent J [`], ideal of `-torsion.
Method: write `D = 0 formally, then ‘solve’ that system.

Here comes trouble. . .
How to model and solve it efficiently?

−→ multihomogeneous structure
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Modelling the `-torsion

Writing `D = 0
Formally, D = P1 + · · ·+ Pg , coordinates of Pi (xi , yi) are variables.
Compute `Pi , then apply zero-test to `D = ∑

i `Pi .

⇒ there is a ϕ(X ,Y ) = P(X ) + YQ(X ) such that `D = (ϕ).

All computations done. . .
For each i we get the following congruence:

P(X ) + Q(X )vi(X ) ≡ 0 mod ui(X )

About g2 equations in g2 variables ⇒ Bézout bound in `g2 .
⇒ seems hard to improve previous bound in (log q)O(g2). . .
But not all these variables appear with high degrees.
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Multihomogeneity and complexity
2g variables (xi , yi)∏

i dg (xi) 6= 0, y 2
i − f (xi) = 0

dij = dj(xi), eij = ej(xi)


degree Og (`3) in xi

O(g2) equations

Searching ϕ = P(X ) + Q(X )Y
g2 − g variables pi and qi

P + Qvi ≡ 0 mod ui
∀i 6= j , Res(ui , uj) 6= 0



deg ≤ g2 in dij

deg ≤ 1 in pi , qi , eij

O(g2) variables
O(g2) equations

Theorem (Giusti-Lecerf-Salvy’01, Cafure-Matera’06)
Assume f1, · · · , fn have degrees ≤ d and form a reduced regular
sequence, and let δ = maxi deg〈f1, . . . , fi〉. There is an algorithm
computing a geometric resolution in time polynomial in δ, d , n.

With δ = Og (`3g ) bounded by multihomogeneous Bézout bound.
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Handling the torsion

Goal: represent J [`], ideal of `-torsion.
Method: write `D = 0 formally, then ‘solve’ that system.

Here comes trouble. . .
How to model and solve it efficiently?
−→ multihomogeneous structure

Overall result
Model the `-torsion with complexity Og (`cg ).
Recall the largest ` is in Og (log q).
⇒ we compute Λ in Og (logcg q).
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Overview and contributions

Asymptotic complexities (hyperelliptic case)
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Experiments in genus 3?

Just writing the systems is hard, solving out of reach for ` ≥ 5.

Bad news
Remember J [`] ' (Z/`Z)2g , must deal with ideals of degree `6.
Can reach Õ(`12) using naive elimination, hard to go below.
⇒ Intrinsic difficulty due to size of J [`].

First step: easier instances
J [`] is a vector space of fixed size, what about subspaces?
Context ⇒ need π-stable subspaces (i.e. factors of Λ mod `)
Question: find curves with `-torsion that is sum of such subspaces.
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A practical case in genus 3
A RM family [Kohel-Smith’06]
Family Ct : y 2 = x7 − 7x5 + 14x3 − 7x + t with t ∈ Fq.
−→ hyperelliptic curves of genus 3, but a bit special.
Denote Jt their Jacobians, recall they are groups.

Where there are groups, there are group (endo)morphisms.
Famous endomorphisms: Frobenius π, multiplication [`].

A remarkable structure
Here, additional endomorphism η, explicit and easy to compute:
For P = (x , y) a generic point on C, η(P) = P+ + P− with

P± =
−11

4 x ±
√
105
16 x2 + 16

9 , y
 .
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Exploiting this structure
For some `, decompose multiplication as [`] = ε1ε2ε3 in Z[η],
Minimal polynomial of η is X 3 + X 2 − 2X − 1,
Write εi = ai + biη + ciη

2, and |ai |, |bi |, |ci | in O(`2/3).
Split Jt [`] ∼=

⊕3
i=1 Ker εi ⇒ model Ker εi instead of Jt [`].

Another modelization
Write εi(D) = 0 instead of `D = 0, say D = P1 + P2 + P3 − 3(∞),
Rewrite it εi(P1) + εi(P2) = −εi(P3):

d̃1(x1, x2, y)d3(x3)− d̃3(x1, x2)d1(x3) = 0,
d̃2(x1, x2, y)d3(x3)− d̃3(x1, x2)d2(x3) = 0,
d̃3(x1, x2, y)d3(x3)− d̃3(x1, x2)d3(x3) = 0.

Degrees of these polynomials are in O(`2/3).
Reminder: without splitting Jt [`], degrees would be in O(`2).
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Solving the system

In theory: no fancy trick
Successive elimination with resultants → Õ(`4).
About a third of ` splits, largest one still in O(log q).
⇒ Overall complexity in Õ(log6 q), vs Õ(log14 q) in general.

In practice (q is a 64-bit prime)
Compute a Gröbner basis using Magma’s routines.
Split ` we aim for: 13, 29 (also 41 and 43, but speculative)
Other methods yield 2,3 (inert) and 7 (ramified).
Deduce Λ using BSGS, with speed-up ∏` `

3/2.
Ongoing computation, expect Λ in roughly one CPU year.
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Conclusion

Describing J [`]: modelling by polynomial system, then solving.
For curves with RM: split the torsion and describe the smaller bits.

Theoretic result Fixed genus case
Curves hyperelliptic hyperelliptic with RM
Genus any g g = 3

Object to model `-torsion J [`] Ker εi where ` = ∏
εi

Equation `D = 0 εi(D) = 0
Complexity Og ((log q)cg ) Õ((log q)6)
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Thanks for your attention
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