Point counting on hyperelliptic curves: to genus 3 and beyond

Simon Abelard Université de Lorraine, Nancy

Joint work with P. Gaudry and P.-J. Spaenlehauer

$$
\text { January 25, } 2018
$$

cors

It's all about generating series. . .

A first example

How many solutions of $y^{2}=x^{7}-7 x^{5}+14 x^{3}-7 x+1$ in $\mathbb{F}_{23^{k}}$?
Goal: generating series associated to these numbers of solutions. This series is rational so small k 's are sufficient (≤ 3 in this case).

It's all about generating series. . .

A first example

 How many solutions of $y^{2}=x^{7}-7 x^{5}+14 x^{3}-7 x+1$ in $\mathbb{F}_{23^{k}}$? Goal: generating series associated to these numbers of solutions. This series is rational so small k 's are sufficient (≤ 3 in this case).
Curves and points

Let $f \in \mathbb{F}_{q}[X]$ be monic, squarefree of degree $2 g+1$.
Equation $Y^{2}=f(X) \rightarrow$ hyperelliptic curve \mathcal{C} of genus g over \mathbb{F}_{q}. If \mathcal{C} defined over $\mathbb{F}_{q}, P=(x, y) \in \mathcal{C}$ is rational if $(x, y) \in\left(\mathbb{F}_{q}\right)^{2}$.

It's all about generating series. . .

A first example

How many solutions of $y^{2}=x^{7}-7 x^{5}+14 x^{3}-7 x+1$ in $\mathbb{F}_{23^{k}}$?
Goal: generating series associated to these numbers of solutions. This series is rational so small k 's are sufficient (≤ 3 in this case).

Curves and points

Let $f \in \mathbb{F}_{q}[X]$ be monic, squarefree of degree $2 g+1$.
Equation $Y^{2}=f(X) \rightarrow$ hyperelliptic curve \mathcal{C} of genus g over \mathbb{F}_{q}. If \mathcal{C} defined over $\mathbb{F}_{q}, P=(x, y) \in \mathcal{C}$ is rational if $(x, y) \in\left(\mathbb{F}_{q}\right)^{2}$.

Let $\mathcal{C}\left(\mathbb{F}_{q^{\prime}}\right)=\left\{(x, y) \in\left(\mathbb{F}_{q^{\prime}}\right)^{2} \mid y^{2}=f(x)\right\} \cup\{\infty\}$.
Point counting: computing $\# \mathcal{C}\left(\mathbb{F}_{q^{i}}\right)$ for $1 \leq i \leq g$.
... Or rather polynomials
Let \mathcal{C} be a hyperelliptic curve of genus g.

Weil conjectures to the rescue

Point counting over \mathbb{F}_{q} is computing the local ζ function of \mathcal{C} :

$$
\zeta(s)=\exp \left(\sum_{k} \# \mathcal{C}\left(\mathbb{F}_{q^{k}}\right) \frac{s^{k}}{k}\right) \stackrel{\text { thm }}{=} \frac{\Lambda(s)}{(1-s)(1-q s)} .
$$

With $\Lambda \in \mathbb{Z}[X]$ of degree $2 g$ having bounded coefficients.

... Or rather polynomials

Let \mathcal{C} be a hyperelliptic curve of genus g.
Weil conjectures to the rescue
Point counting over \mathbb{F}_{q} is computing the local ζ function of \mathcal{C} :

$$
\zeta(s)=\exp \left(\sum_{k} \# \mathcal{C}\left(\mathbb{F}_{q^{k}}\right) \frac{s^{k}}{k}\right) \stackrel{\text { thm }}{=} \frac{\Lambda(s)}{(1-s)(1-q s)} .
$$

With $\Lambda \in \mathbb{Z}[X]$ of degree $2 g$ having bounded coefficients.

Point counting

Input: $f \in \mathbb{F}_{q}[X]$ defining a hyperelliptic curve Output: the polynomial \wedge

... Or rather polynomials

Let \mathcal{C} be a hyperelliptic curve of genus g.
Weil conjectures to the rescue
Point counting over \mathbb{F}_{q} is computing the local ζ function of \mathcal{C} :

$$
\zeta(s)=\exp \left(\sum_{k} \# \mathcal{C}\left(\mathbb{F}_{q^{k}}\right) \frac{s^{k}}{k}\right) \stackrel{\text { thm }}{=} \frac{\Lambda(s)}{(1-s)(1-q s)} .
$$

With $\Lambda \in \mathbb{Z}[X]$ of degree $2 g$ having bounded coefficients.

Point counting

 Input: $f \in \mathbb{F}_{q}[X]$ defining a hyperelliptic curve Output: the polynomial \wedgeWe study the complexity of such algorithms.

A broad range of related problems

Finding 'nice' curves

Cryptography: $g \leq 2$ and q large, needed to assess security. Error-correcting codes: need curves with many rational points.

Arithmetic geometry

Conjectures in number theory e.g. Sato-Tate in genus ≥ 2. L-functions associated: $L(s, \mathcal{C})=\sum_{p} A_{p} / p^{s}$ with $A_{p}=\# \mathcal{C}\left(\mathbb{F}_{p}\right) / \sqrt{p}$. Computing them relies on point-counting primitives.

A broad range of related problems

Finding 'nice' curves

Cryptography: $g \leq 2$ and q large, needed to assess security. Error-correcting codes: need curves with many rational points.

Arithmetic geometry

Conjectures in number theory e.g. Sato-Tate in genus ≥ 2. L-functions associated: $L(s, \mathcal{C})=\sum_{p} A_{p} / p^{s}$ with $A_{p}=\# \mathcal{C}\left(\mathbb{F}_{p}\right) / \sqrt{p}$. Computing them relies on point-counting primitives.

Two families of algorithms

- p-adic methods: polynomial in g, exponential in $\log p$ Satoh'99, Kedlaya'01, Lauder'04
- ℓ-adic methods: exponential in g, polynomial in $\log q$ Schoof'85, Gaudry-Schost'12

Overview and contributions

Asymptotic complexities (hyperelliptic case)

Pila'90	Huang-lerardi'98	Adleman-Huang'01	Our result
$(\log q)^{O_{g}(1)}$	$(\log q)^{g^{O(1)}}$	$(\log q)^{O\left(g^{2} \log g\right)}$	$O_{g}\left((\log q)^{c g}\right)$

Overview and contributions

Asymptotic complexities (hyperelliptic case)

Pila'90 \mid Huang-lerardi'98 $(\log q)^{g^{O(1)}}$
Adleman-Huang'01 $(\log q)^{O\left(g^{2} \log g\right)}$
\section*{Our result}
$O_{g}\left((\log q)^{c g}\right)$

Practical algorithms

Genus	Complexity	Authors
$g=1$	$\tilde{O}\left(\log ^{4} q\right)$	Schoof-Elkies-Atkin
$g=2$	$\tilde{O}\left(\log ^{8} q\right)$	Gaudry-Schost
$g=3$	$\tilde{O}\left(\log ^{14} q\right) ?$	
$g=2$ with RM	$\tilde{O}\left(\log ^{5} q\right)$	Gaudry-Kohel-Smith
$g=3$ with RM	$\tilde{O}\left(\log ^{6} q\right)$	Our result

From curves to groups

$$
P+Q+R=0
$$

$$
P_{1}+P_{2}+Q_{1}+Q_{2}+R_{1}+R_{2}=0
$$

Counting points on hyperelliptic curves

Let $\mathcal{C}: y^{2}=f(x)$ be a hyperelliptic curve over \mathbb{F}_{q}. Let J be its Jacobian and g its genus.
(1) (Hasse-Weil) coefficients of Λ are bounded integers.
(2) ℓ-torsion $J[\ell]=\{D \in J \mid \ell D=0\} \simeq(\mathbb{Z} / \ell \mathbb{Z})^{2 g}$
(3) Frobenius $\pi:(x, y) \mapsto\left(x^{q}, y^{q}\right)$ acts linearly on $J[\ell]$
(9) For χ the char. polynomial of $\pi, \chi^{\text {rev }}=\Lambda \bmod \ell$

Algorithm a la Schoof

For each prime $\ell \leq(9 g+3) \log q$
Describe I_{ℓ} the ideal of ℓ-torsion
Compute $\chi \bmod \ell$ by testing char. eq. of π in I_{ℓ}
Deduce $\Lambda \bmod \ell$
Recover \wedge by CRT

Counting points on hyperelliptic curves

Let $\mathcal{C}: y^{2}=f(x)$ be a hyperelliptic curve over \mathbb{F}_{q}.
Let J be its Jacobian and g its genus.
(1) (Hasse-Weil) coefficients of Λ are bounded integers.
(2) ℓ-torsion $J[\ell]=\{D \in J \mid \ell D=0\} \simeq(\mathbb{Z} / \ell \mathbb{Z})^{2 g}$
(3) Frobenius $\pi:(x, y) \mapsto\left(x^{q}, y^{q}\right)$ acts linearly on $J[\ell]$
(9) For χ the char. polynomial of $\pi, \chi^{\text {rev }}=\Lambda \bmod \ell$

Algorithm a la Schoof

For each prime $\ell \leq(9 g+3) \log q$
Describe I_{ℓ} the ideal of ℓ-torsion
Compute $\chi \bmod \ell$ by testing char. eq. of π in I_{ℓ}
Deduce $\Lambda \bmod \ell$
Recover Λ by CRT

Counting points on hyperelliptic curves

Let $\mathcal{C}: y^{2}=f(x)$ be a hyperelliptic curve over \mathbb{F}_{q}.
Let J be its Jacobian and g its genus.
(1) (Hasse-Weil) coefficients of Λ are bounded integers.
(2) ℓ-torsion $J[\ell]=\{D \in J \mid \ell D=0\} \simeq(\mathbb{Z} / \ell \mathbb{Z})^{2 g}$
(3) Frobenius π : $(x, y) \mapsto\left(x^{q}, y^{q}\right)$ acts linearly on $J[\ell]$
(- For χ the char. polynomial of $\pi, \chi^{\text {rev }}=\Lambda \bmod \ell$

Algorithm a la Schoof

For each prime $\ell \leq(9 g+3) \log q$
Describe I_{ℓ} the ideal of ℓ-torsion
Compute $\chi \bmod \ell$ by testing char. eq. of π in I_{ℓ}
Deduce $\wedge \bmod \ell$
Recover \wedge by CRT

Counting points on hyperelliptic curves

Let $\mathcal{C}: y^{2}=f(x)$ be a hyperelliptic curve over \mathbb{F}_{q}.
Let J be its Jacobian and g its genus.
(1) (Hasse-Weil) coefficients of Λ are bounded integers.
(2) ℓ-torsion $J[\ell]=\{D \in J \mid \ell D=0\} \simeq(\mathbb{Z} / \ell \mathbb{Z})^{2 g}$
(3) Frobenius $\pi:(x, y) \mapsto\left(x^{q}, y^{q}\right)$ acts linearly on $J[\ell]$
(9) For χ the char. polynomial of $\pi, \chi^{\text {rev }}=\Lambda \bmod \ell$

Algorithm a la Schoof

For each prime $\ell \leq(9 g+3) \log q$
Describe I_{ℓ} the ideal of ℓ-torsion
Compute $\chi \bmod \ell$ by testing char. eq. of π in ℓ_{ℓ}
Deduce $\Lambda \bmod \ell$
Recover Λ by CRT

Handling the torsion

Goal: represent $J[\ell]$, ideal of ℓ-torsion.
Method: write $\ell D=0$ formally, then 'solve' that system.

Here comes trouble...

How to model and solve it efficiently?

Handling the torsion

Goal: represent $J[\ell]$, ideal of ℓ-torsion.
Method: write $\ell D=0$ formally, then 'solve' that system.

Here comes trouble...

How to model and solve it efficiently?
\longrightarrow multihomogeneous structure

Modelling the ℓ-torsion

Writing $\ell D=0$

Formally, $D=P_{1}+\cdots+P_{g}$, coordinates of $P_{i}\left(x_{i}, y_{i}\right)$ are variables. Compute ℓP_{i}, then apply zero-test to $\ell D=\sum_{i} \ell P_{i}$.

Modelling the ℓ-torsion

Writing $\ell D=0$

Formally, $D=P_{1}+\cdots+P_{g}$, coordinates of $P_{i}\left(x_{i}, y_{i}\right)$ are variables. Compute ℓP_{i}, then apply zero-test to $\ell D=\sum_{i} \ell P_{i}$.
\Rightarrow there is a $\varphi(X, Y)=P(X)+Y Q(X)$ such that $\ell D=(\varphi)$.

Modelling the ℓ-torsion

Writing $\ell D=0$

Formally, $D=P_{1}+\cdots+P_{g}$, coordinates of $P_{i}\left(x_{i}, y_{i}\right)$ are variables.
Compute ℓP_{i}, then apply zero-test to $\ell D=\sum_{i} \ell P_{i}$.
\Rightarrow there is a $\varphi(X, Y)=P(X)+Y Q(X)$ such that $\ell D=(\varphi)$.
All computations done...
For each i we get the following congruence:

$$
P(X)+Q(X) v_{i}(X) \equiv 0 \quad \bmod u_{i}(X)
$$

About g^{2} equations in g^{2} variables \Rightarrow Bézout bound in $\ell^{g^{2}}$. \Rightarrow seems hard to improve previous bound in $(\log q)^{O\left(g^{2}\right)} \ldots$ But not all these variables appear with high degrees.

Multihomogeneity and complexity

$$
\left.\begin{array}{c}
2 g \text { variables }\left(x_{i}, y_{i}\right) \\
\prod_{i} d_{g}\left(x_{i}\right) \neq 0, y_{i}^{2}-f\left(x_{i}\right)=0 \\
d_{i j}=d_{j}\left(x_{i}\right), e_{i j}=e_{j}\left(x_{i}\right)
\end{array}\right\} \begin{aligned}
& \text { degree } O_{g}\left(\ell^{3}\right) \text { in } x_{i} \\
& O\left(g^{2}\right) \text { equations }
\end{aligned}
$$

Searching $\varphi=P(X)+Q(X) Y$

$$
\begin{gathered}
g^{2}-g \text { variables } p_{i} \text { and } q_{i} \\
P+Q v_{i} \equiv 0 \bmod u_{i} \\
\forall i \neq j, \operatorname{Res}\left(u_{i}, u_{j}\right) \neq 0
\end{gathered}
$$

Multihomogeneity and complexity

$$
\begin{gathered}
2 g \text { variables }\left(x_{i}, y_{i}\right) \\
\Pi_{i} d_{g}\left(x_{i}\right) \neq 0, y_{i}^{2}-f\left(x_{i}\right)=0 \\
d_{i j}=d_{j}\left(x_{i}\right), e_{i j}=e_{j}\left(x_{i}\right)
\end{gathered}
$$

Searching $\varphi=P(X)+Q(X) Y$
$g^{2}-g$ variables p_{i} and q_{i}
$P+Q v_{i} \equiv 0 \bmod u_{i}$
$\forall i \neq j, \operatorname{Res}\left(u_{i}, u_{j}\right) \neq 0$
) degree $O_{g}\left(\ell^{3}\right)$ in x_{i}
$O\left(g^{2}\right)$ equations
) deg $\leq g^{2}$ in $d_{i j}$
$\operatorname{deg} \leq 1$ in $p_{i}, q_{i}, e_{i j}$
$O\left(g^{2}\right)$ variables
$O\left(g^{2}\right)$ equations

Theorem (Giusti-Lecerf-Salvy'01, Cafure-Matera'06)

Assume f_{1}, \cdots, f_{n} have degrees $\leq d$ and form a reduced regular sequence, and let $\delta=\max _{i} \operatorname{deg}\left\langle f_{1}, \ldots, f_{i}\right\rangle$. There is an algorithm computing a geometric resolution in time polynomial in $\delta, \boldsymbol{d}, n$.

With $\delta=O_{g}\left(\ell^{3 g}\right)$ bounded by multihomogeneous Bézout bound.

Handling the torsion

Goal: represent $J[\ell]$, ideal of ℓ-torsion.
Method: write $\ell D=0$ formally, then 'solve' that system.

Here comes trouble...

How to model and solve it efficiently?
\longrightarrow multihomogeneous structure

Overall result

Model the ℓ-torsion with complexity $O_{g}\left(\ell^{c g}\right)$.
Recall the largest ℓ is in $O_{g}(\log q)$.
\Rightarrow we compute \wedge in $O_{g}\left(\log ^{c g} q\right)$.

Overview and contributions

Asymptotic complexities (hyperelliptic case)

Pila'90 | Huang-lerardi'98 $(\log q)^{g^{(1)}}$

Adleman-Huang'01 $(\log q)^{O\left(g^{2} \log g\right)}$

Our result

$\mathrm{O}_{\mathrm{g}}\left((\log q)^{c g}\right)$

Practical algorithms

Genus	Complexity	Authors
$g=1$	$\tilde{O}\left(\log ^{4} q\right)$	Schoof-Elkies-Atkin
$g=2$	$\tilde{O}\left(\log ^{8} q\right)$	Gaudry-Schost
$g=3$	$\tilde{O}\left(\log ^{14} q\right) ?$	
$g=2$ with RM	$\tilde{O}\left(\log ^{5} q\right)$	Gaudry-Kohel-Smith
$g=3$ with RM	$\tilde{O}\left(\log ^{6} q\right)$	Our result

Experiments in genus 3 ?

Just writing the systems is hard, solving out of reach for $\ell \geq 5$.

Bad news

Remember $J[\ell] \simeq(\mathbb{Z} / \ell \mathbb{Z})^{2 g}$, must deal with ideals of degree ℓ^{6}. Can reach $\widetilde{O}\left(\ell^{12}\right)$ using naive elimination, hard to go below. \Rightarrow Intrinsic difficulty due to size of $J[\ell]$.

Experiments in genus 3 ?

Just writing the systems is hard, solving out of reach for $\ell \geq 5$.

Bad news

Remember $J[\ell] \simeq(\mathbb{Z} / \ell \mathbb{Z})^{2 g}$, must deal with ideals of degree ℓ^{6}. Can reach $\widetilde{O}\left(\ell^{12}\right)$ using naive elimination, hard to go below. \Rightarrow Intrinsic difficulty due to size of $J[\ell]$.

First step: easier instances

$J[\ell]$ is a vector space of fixed size, what about subspaces? Context \Rightarrow need π-stable subspaces (i.e. factors of $\Lambda \bmod \ell$) Question: find curves with ℓ-torsion that is sum of such subspaces.

A practical case in genus 3

A RM family [Kohel-Smith'06]

Family $\mathcal{C}_{t}: y^{2}=x^{7}-7 x^{5}+14 x^{3}-7 x+t$ with $t \in \mathbb{F}_{q}$.
\longrightarrow hyperelliptic curves of genus 3 , but a bit special.
Denote J_{t} their Jacobians, recall they are groups.
Where there are groups, there are group (endo)morphisms.
Famous endomorphisms: Frobenius π, multiplication [$\ell]$.

A practical case in genus 3

A RM family [Kohel-Smith'06]

Family $\mathcal{C}_{t}: y^{2}=x^{7}-7 x^{5}+14 x^{3}-7 x+t$ with $t \in \mathbb{F}_{q}$.
\longrightarrow hyperelliptic curves of genus 3 , but a bit special.
Denote J_{t} their Jacobians, recall they are groups.
Where there are groups, there are group (endo)morphisms.
Famous endomorphisms: Frobenius π, multiplication [$\ell]$.

A remarkable structure

Here, additional endomorphism η, explicit and easy to compute:
For $P=(x, y)$ a generic point on $\mathcal{C}, \eta(P)=P_{+}+P_{-}$with

$$
P_{ \pm}=\left(-\frac{11}{4} x \pm \sqrt{\frac{105}{16} x^{2}+\frac{16}{9}}, y\right) .
$$

Exploiting this structure

For some ℓ, decompose multiplication as $[\ell]=\epsilon_{1} \epsilon_{2} \epsilon_{3}$ in $\mathbb{Z}[\eta]$, Minimal polynomial of η is $X^{3}+X^{2}-2 X-1$, Write $\epsilon_{i}=a_{i}+b_{i} \eta+c_{i} \eta^{2}$, and $\left|a_{i}\right|,\left|b_{i}\right|,\left|c_{i}\right|$ in $O\left(\ell^{2 / 3}\right)$. Split $J_{t}[\ell] \cong \oplus_{i=1}^{3} \operatorname{Ker} \epsilon_{i} \Rightarrow$ model $\operatorname{Ker} \epsilon_{i}$ instead of $J_{t}[\ell]$.

Exploiting this structure

For some ℓ, decompose multiplication as $[\ell]=\epsilon_{1} \epsilon_{2} \epsilon_{3}$ in $\mathbb{Z}[\eta]$, Minimal polynomial of η is $X^{3}+X^{2}-2 X-1$, Write $\epsilon_{i}=a_{i}+b_{i} \eta+c_{i} \eta^{2}$, and $\left|a_{i}\right|,\left|b_{i}\right|,\left|c_{i}\right|$ in $O\left(\ell^{2 / 3}\right)$. Split $J_{t}[\ell] \cong \oplus_{i=1}^{3} \operatorname{Ker} \epsilon_{i} \Rightarrow$ model Ker ϵ_{i} instead of $J_{t}[\ell]$.

Another modelization

Write $\epsilon_{i}(D)=0$ instead of $\ell D=0$, say $D=P_{1}+P_{2}+P_{3}-3(\infty)$, Rewrite it $\epsilon_{i}\left(P_{1}\right)+\epsilon_{i}\left(P_{2}\right)=-\epsilon_{i}\left(P_{3}\right)$:

$$
\begin{aligned}
& \tilde{d}_{1}\left(x_{1}, x_{2}, y\right) d_{3}\left(x_{3}\right)-\tilde{d}_{3}\left(x_{1}, x_{2}\right) d_{1}\left(x_{3}\right)=0, \\
& \tilde{d}_{2}\left(x_{1}, x_{2}, y\right) d_{3}\left(x_{3}\right)-\tilde{d}_{3}\left(x_{1}, x_{2}\right) d_{2}\left(x_{3}\right)=0, \\
& \tilde{d}_{3}\left(x_{1}, x_{2}, y\right) d_{3}\left(x_{3}\right)-\tilde{d}_{3}\left(x_{1}, x_{2}\right) d_{3}\left(x_{3}\right)=0 .
\end{aligned}
$$

Exploiting this structure

For some ℓ, decompose multiplication as $[\ell]=\epsilon_{1} \epsilon_{2} \epsilon_{3}$ in $\mathbb{Z}[\eta]$, Minimal polynomial of η is $X^{3}+X^{2}-2 X-1$, Write $\epsilon_{i}=a_{i}+b_{i} \eta+c_{i} \eta^{2}$, and $\left|a_{i}\right|,\left|b_{i}\right|,\left|c_{i}\right|$ in $O\left(\ell^{2 / 3}\right)$. Split $J_{t}[\ell] \cong \oplus_{i=1}^{3} \operatorname{Ker} \epsilon_{i} \Rightarrow$ model Ker ϵ_{i} instead of $J_{t}[\ell]$.

Another modelization

Write $\epsilon_{i}(D)=0$ instead of $\ell D=0$, say $D=P_{1}+P_{2}+P_{3}-3(\infty)$, Rewrite it $\epsilon_{i}\left(P_{1}\right)+\epsilon_{i}\left(P_{2}\right)=-\epsilon_{i}\left(P_{3}\right)$:

$$
\begin{aligned}
& \tilde{d}_{1}\left(x_{1}, x_{2}, y\right) d_{3}\left(x_{3}\right)-\tilde{d}_{3}\left(x_{1}, x_{2}\right) d_{1}\left(x_{3}\right)=0, \\
& \tilde{d}_{2}\left(x_{1}, x_{2}, y\right) d_{3}\left(x_{3}\right)-\tilde{d}_{3}\left(x_{1}, x_{2}\right) d_{2}\left(x_{3}\right)=0, \\
& \tilde{d}_{3}\left(x_{1}, x_{2}, y\right) d_{3}\left(x_{3}\right)-\tilde{d}_{3}\left(x_{1}, x_{2}\right) d_{3}\left(x_{3}\right)=0 .
\end{aligned}
$$

Degrees of these polynomials are in $O\left(\ell^{2 / 3}\right)$.
Reminder: without splitting $J_{t}[\ell]$, degrees would be in $O\left(\ell^{2}\right)$.

Solving the system

In theory: no fancy trick

Successive elimination with resultants $\rightarrow \widetilde{O}\left(\ell^{4}\right)$. About a third of ℓ splits, largest one still in $O(\log q)$. \Rightarrow Overall complexity in $\widetilde{O}\left(\log ^{6} q\right)$, vs $\widetilde{O}\left(\log ^{14} q\right)$ in general.

Solving the system

In theory: no fancy trick

Successive elimination with resultants $\rightarrow \widetilde{O}\left(\ell^{4}\right)$. About a third of ℓ splits, largest one still in $O(\log q)$. \Rightarrow Overall complexity in $\widetilde{O}\left(\log ^{6} q\right)$, vs $\widetilde{O}\left(\log ^{14} q\right)$ in general.

In practice (q is a 64-bit prime)

Compute a Gröbner basis using Magma's routines.
Split ℓ we aim for: 13, 29 (also 41 and 43, but speculative)
Other methods yield 2,3 (inert) and 7 (ramified).
Deduce Λ using BSGS, with speed-up $\prod_{\ell} \ell^{3 / 2}$.
Ongoing computation, expect Λ in roughly one CPU year.

Conclusion

Describing $J[\ell]$: modelling by polynomial system, then solving. For curves with RM: split the torsion and describe the smaller bits.

	Theoretic result	Fixed genus case
Curves	hyperelliptic	hyperelliptic with RM
Genus	any g	$g=3$
Object to model	ℓ-torsion $J[\ell]$	$\operatorname{Ker} \epsilon_{i}$ where $\ell=\Pi \epsilon_{i}$
Equation	$\ell D=0$	$\epsilon_{i}(D)=0$
Complexity	$O_{g}\left((\log q)^{c g}\right)$	$\widetilde{O}\left((\log q)^{6}\right)$

Thanks for your attention

