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It's all about generating series. ..

A first example

How many solutions of y? = x” — 7x5 4+ 14x3 — 7x + 1 in Fyz ?
Goal: generating series associated to these numbers of solutions.
This series is rational so small k's are sufficient (< 3 in this case).
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A first example

How many solutions of y? = x” — 7x5 4+ 14x3 — 7x + 1 in Fyz ?
Goal: generating series associated to these numbers of solutions.
This series is rational so small k's are sufficient (< 3 in this case).

Curves and points

Let f € [F,[X] be monic, squarefree of degree 2g + 1.
Equation Y? = f(X) — hyperelliptic curve C of genus g over F.
If C defined over F,, P = (x,y) € C is rational if (x,y) € (F)°.
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It's all about generating series. ..

A first example

How many solutions of y? = x” — 7x5 4+ 14x3 — 7x + 1 in Fyz ?
Goal: generating series associated to these numbers of solutions.
This series is rational so small k's are sufficient (< 3 in this case).

Curves and points

Let f € [F,[X] be monic, squarefree of degree 2g + 1.
Equation Y? = f(X) — hyperelliptic curve C of genus g over F.
If C defined over F,, P = (x,y) € C is rational if (x,y) € (F)°.

Let C(Fy) = {(x.¥) € (Fg)* |y? = f(x)} U {o0}.
Point counting: computing #C(F,) for 1 <i < g.
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... Or rather polynomials

Let C be a hyperelliptic curve of genus g.

Weil conjectures to the rescue
Point counting over [ is computing the local ¢ function of C:

With A € Z[X] of degree 2g having bounded coefficients.

Simon Abelard Point counting January 25, 2018 3/18



... Or rather polynomials

Let C be a hyperelliptic curve of genus g.

Weil conjectures to the rescue

Point counting over [ is computing the local ¢ function of C:

With A € Z[X] of degree 2g having bounded coefficients.

Point counting

Input: f € Fy[X] defining a hyperelliptic curve
Output: the polynomial A

Simon Abelard Point counting January 25, 2018 3/18



... Or rather polynomials

Let C be a hyperelliptic curve of genus g.

Weil conjectures to the rescue

Point counting over [ is computing the local ¢ function of C:

With A € Z[X] of degree 2g having bounded coefficients.

Point counting

Input: f € Fy[X] defining a hyperelliptic curve
Output: the polynomial A

We study the complexity of such algorithms.
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A broad range of related problems

Finding ‘nice’ curves
Cryptography: g < 2 and g large, needed to assess security.
Error-correcting codes: need curves with many rational points.

Arithmetic geometry

Conjectures in number theory e.g. Sato-Tate in genus > 2.
L-functions associated: L(s,C) = -, A,/p® with A, = #C(F,)//p-
Computing them relies on point-counting primitives.
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A broad range of related problems

Finding ‘nice’ curves
Cryptography: g < 2 and g large, needed to assess security.
Error-correcting codes: need curves with many rational points.

Arithmetic geometry

Conjectures in number theory e.g. Sato-Tate in genus > 2.
L-functions associated: L(s,C) = -, A,/p® with A, = #C(F,)//p-
Computing them relies on point-counting primitives.

Two families of algorithms

@ p-adic methods: polynomial in g, exponential in log p
Satoh'99, Kedlaya'01, Lauder'04

@ (-adic methods: exponential in g, polynomial in log g
Schoof'85, Gaudry-Schost’12
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Overview and contributions

Asymptotic complexities (hyperelliptic case)
Pila’90 Huang-lerardi'98 | Adleman-Huang’01 | Our result
(logq)%™ | (log q)e™” (log g)°te*g8) | O, ((log 9)*)
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Overview and contributions

Asymptotic complexities (hyperelliptic case)

Pila'90
(log q)%()

Huang-lerardi’98

(log q)&*"

Adleman-Huang'01
(log q)o(g2 log g)

Our result
O, ((log q)#)

4

Practical algorithms

Genus Complexity Authors
g=1 O(log* q) Schoof-Elkies-Atkin
g=2 (N)(Iog8 q) Gaudry-Schost
g=3 O(log™ q) ?
g = 2 with RM | O(log® q) Gaudry-Kohel-Smith
g = 3 with RM | O(log® q) Our result
January 25,2018 5/ 18



From curves to groups
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Counting points on hyperelliptic curves

Let C : y? = f(x) be a hyperelliptic curve over F,,.
Let J be its Jacobian and g its genus.

@ (Hasse-Weil) coefficients of A are bounded integers.
@ (-torsion J[{] = {D € J|(D = 0} ~ (Z/(Z)*®

@ Frobenius 7 : (x,y) — (x9,y9) acts linearly on J[{]
@ For x the char. polynomial of 7, x" = A mod /¢

Algorithm a /a Schoof

For each prime ¢ < (9g + 3) log q
Describe /, the ideal of /-torsion
Compute x mod ¢ by testing char. eq. of 7w in I
Deduce A mod /

Recover A by CRT
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Handling the torsion

Goal: represent J[/], ideal of ¢-torsion.
Method: write /D = 0 formally, then ‘solve’ that system.

Here comes trouble. . .

How to model and solve it efficiently?
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Goal: represent J[/], ideal of ¢-torsion.
Method: write /D = 0 formally, then ‘solve’ that system.

Here comes trouble. . .

How to model and solve it efficiently?
— multihomogeneous structure
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Modelling the ¢-torsion

Writing /D = 0

Formally, D = P; + - - - + Pg, coordinates of P; (x;, y;) are variables.
Compute ZP;, then apply zero-test to /D = >, (P;.
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Modelling the ¢-torsion

Writing /D = 0

Formally, D = P; + - - - + Pg, coordinates of P; (x;, y;) are variables.
Compute ZP;, then apply zero-test to /D = >, (P;.

= there is a (X, Y) = P(X) + YQ(X) such that /D = ().
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Modelling the ¢-torsion

Writing /D = 0

Formally, D = P; + - - - + Pg, coordinates of P; (x;, y;) are variables.
Compute ZP;, then apply zero-test to /D = >, (P;.

= there is a ¢(X, Y) = P(X) + YQ(X) such that /D = (y).

All computations done. ..
For each i we get the following congruence:

P(X) + QUX)vi(X) =0 mod u(X)

About g2 equations in g2 variables = Bézout bound in (&°.
= seems hard to improve previous bound in (log ¢)°€”). ..
But not all these variables appear with high degrees.
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Multihomogeneity and complexity

2g variables (x;, y;) degree O,(¢%) in x;
[Ti dg(x;) # 0, y? — f(x;) =0
dj = di(x;), &5 = ei(x) O(g?) equations
Searching ¢ = P(X) + Q(X)Y deg < g7 ind;
g2 — g variables p; and g; deg = 1in p;, qi, €
P4 Qv; =0 mod y; O(g?) variables
Vi # J, Res(ui, uy) # 0 O(g?) equations
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Multihomogeneity and complexity

2g variables (x;, y;)

[T dg(x) #0, y7 — f(x) =0
dj = di(x:), ej = €j(xi)

Searching » = P(X) + Q(X)Y
g2 — g variables p; and g;
P+ Qv; = 0 mod u;

Vi # j, Res(u;, u;) #0

degree O,(?) in x;

O(g?) equations
deg < g7 in djj
deg < 1in pj, qj, €
O(g?) variables
O(g?) equations

Theorem (Giusti-Lecerf-Salvy'01, Cafure-Matera’'06)

Assume fi,--- , f, have degrees < d and form a reduced regular

sequence, and let 0 = max; deg(fy, . ..

, ;). There is an algorithm

computing a geometric resolution in time polynomial in 4, d, n.

With § = O, (£*¢) bounded by multihomogeneous Bézout bound.

Simon Abelard Point counting January 25, 2018

10 / 18



Handling the torsion

Goal: represent J[/], ideal of ¢-torsion.
Method: write /D = 0 formally, then ‘solve’ that system.

Here comes trouble. . .

How to model and solve it efficiently?
— multihomogeneous structure

Overall result

Model the ¢-torsion with complexity O, (().
Recall the largest £ is in O,(log q).

= we compute A in O,(log® q).
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Overview and contributions

Asymptotic complexities (hyperelliptic case
y y
Pila’90 Huang-lerardi'98 | Adleman-Huang’01 | Our result
(lOg q)Og(l) (|0g q)gO(l) (Iog q)O(gZ log g) Og ((lOg q)cg)l
Practical algorithms
Genus Complexity Authors
g=1 O(log* q) Schoof-Elkies-Atkin
g=2 (~)(Iog8 q) Gaudry-Schost
g=3 O(log™* q) 7
g = 2 with RM Q(IogS q) Gaudry-Kohel-Smith
g = 3 with RM | O(log® q) Our result
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Experiments in genus 37

Just writing the systems is hard, solving out of reach for ¢ > 5.
Bad news

Remember J[(] ~ (Z/(Z)*, must deal with ideals of degree (°.
Can reach O(¢*?) using naive elimination, hard to go below.
= Intrinsic difficulty due to size of J[/].
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Experiments in genus 37

Just writing the systems is hard, solving out of reach for ¢ > 5.

Bad news

Remember J[(] ~ (Z/0Z)*, must deal with ideals of degree (6.
Can reach O(¢*?) using naive elimination, hard to go below.
= Intrinsic difficulty due to size of J[/].

First step: easier instances

J[/] is a vector space of fixed size, what about subspaces?
Context = need m-stable subspaces (i.e. factors of A mod /)
Question: find curves with /-torsion that is sum of such subspaces.
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A practical case in genus 3

A RM family [Kohel-Smith'06]

Family C; : y? = x" — 7x® + 14x® — Tx + t with t € FF,,.
— hyperelliptic curves of genus 3, but a bit special.
Denote J; their Jacobians, recall they are groups.

Where there are groups, there are group (endo)morphisms.
Famous endomorphisms: Frobenius 7, multiplication [¢].
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A practical case in genus 3

A RM family [Kohel-Smith'06]

Family C; : y? = x" — 7x® + 14x® — Tx + t with t € FF,,.
— hyperelliptic curves of genus 3, but a bit special.
Denote J; their Jacobians, recall they are groups.

Where there are groups, there are group (endo)morphisms.
Famous endomorphisms: Frobenius 7, multiplication [¢].

A remarkable structure

Here, additional endomorphism 1), explicit and easy to compute:
For P = (x, y) a generic point on C, n(P) = P + P_ with

11 105 16
P, =|-== 2
L ( 4xj: 16X + g,y).

vy
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Exploiting this structure

For some ¢, decompose multiplication as [{] = €1€e2€¢3 in Z[n)],
Minimal polynomial of 1 is X3 + X? —2X — 1,

Write ¢; = a; + bjn + ¢n?, and |a;|, |bi|, |ci| in O(¢?/3).
Split Ji[(] = @2, Kere; = model Kere; instead of J;[/].
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Exploiting this structure

For some ¢, decompose multiplication as [{] = €1€e2€¢3 in Z[n)],
Minimal polynomial of 7 is X3 + X2 —2X — 1,

Write ¢; = a; + bin + ¢m?, and |aj|, |bi|, |ci| in O(¢2/3).

Split Ji[(] = @2, Kere; = model Kere; instead of J;[/].

Another modelization

Write €;(D) = 0 instead of {D =0, say D = P; + P, + P3 — 3(0),
Rewrite it 6,‘(P1) + 6,‘(P2) = —6,'(P3)Z

dh(x1, X2, y) d3(x3) — d3(X17X2)d1(X3)
da(x1, %2, y)ds(x3) — da(x1, X2) o (3)
d3(x1, X2, y) d3(x3) — d3(xa1, x2) d3(x3) =

0,
0,
0.
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Exploiting this structure

For some ¢, decompose multiplication as [{] = €1€e2€¢3 in Z[n)],
Minimal polynomial of 7 is X3 + X2 —2X — 1,

Write ¢; = a; + bin + ¢m?, and |aj|, |bi|, |ci| in O(¢2/3).
Split Ji[(] = @2, Kere; = model Kere; instead of J;[/].

Another modelization

Write €;(D) = 0 instead of {D =0, say D = P, + P, + P; — 3(c0

Rewrite it 6,‘(P1) + 6,‘(P2) = —6,'(P3)Z
(Xl,XQ, )d3(X3) (Xl,XQ)dl(Xg,) = 0
db(x1, %, ) d(xs) — da(x1, %) da(x3) = O,
(X]_,Xz, )d3( ) d3(X1,X2)d3(X3) 0.

)

Degrees of these polynomials are in O((%/3).
Reminder: without splitting J;[¢], degrees would be in O(¢?).
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Solving the system

In theory: no fancy trick

Successive elimination with resultants — O(¢*).
About a third of £ splits, largest one still in O(log q).
= Overall complexity in O(log® q), vs O(log™* q) in general.
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Solving the system

In theory: no fancy trick

Successive elimination with resultants — O(¢*).
About a third of £ splits, largest one still in O(log q).
= Overall complexity in O(log® q), vs O(log'* q) in general.

In practice (g is a 64-bit prime)

Compute a Grobner basis using Magma's routines.

Split ¢ we aim for: 13, 29 (also 41 and 43, but speculative)
Other methods yield 2,3 (inert) and 7 (ramified).

Deduce A using BSGS, with speed-up T, ¢3/2.

Ongoing computation, expect A in roughly one CPU year.
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Conclusion

Describing J[¢]: modelling by polynomial system, then solving.
For curves with RM: split the torsion and describe the smaller bits.

Theoretic result Fixed genus case
Curves hyperelliptic hyperelliptic with RM
Genus any g g=73
Object to model | /¢-torsion J[¢] | Kere; where ¢ =] ¢;
Equation (D=0 €(D)=0
Complexity O, ((log q)®) O((log q)°)
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Thanks for your attention
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